Introduction to Metabolic Pathways

作者: Abraham L. Sonenshein

DOI: 10.1128/9781555818388.CH9

关键词:

摘要: The major pathway for assimilation of nitrogen is through glutamine. step that links metabolism carbon and conversion 2-ketoglutarate to glutamate It not surprising in gram-negative bacteria the ultimate determinant expression genes ratio intracellular concentrations Some biosynthetic pathways gram-positive have received so little attention they could be subject separate chapters. These include those synthesis L- D-alanine histidine intersecting glycine, serine, cysteine. his Streptomyces coelicolor are organized three unlinked clusters, one which has been sequenced nearly its entirety. route serine biosynthesis Bacillus subtilis Micrococcus luteus 3-phosphoglycerate characteristic most bacteria. first enzyme this pathway, dehydrogenase, feedback inhibited by serine. In Clostridium acidi-urici, however, a different interconversion seems function. case, glycine formaldehyde condense form Mutations at two B. loci cause auxotrophy. SerA- mutants require either or growth. Growth improved if threonine both provided. enzymes sulfate utilization, ATP sulfurylase adenosine-5'-phosphosulfate kinase, activities convert activated sulfite sulfide catalyze incorporation into cysteine present Escherichia coli. only racemization L-alanine.

参考文章(34)
S. C. Warren, Sporulation in Bacillis subtilis. Biochemical changes Biochemical Journal. ,vol. 109, pp. 811- 818 ,(1968) , 10.1042/BJ1090811
Kurt A. Jungermann, Wilhelm Schmidt, F. Hans Kirchniawy, Eckhard H. Rupprecht, Rudolf K. Thauer, Glycine formation via threonine and serine aldolase. Its interrelation with the pyruvate formate lyase pathway of one-carbon unit synthesis in Clostridium kluyveri. FEBS Journal. ,vol. 16, pp. 424- 429 ,(1970) , 10.1111/J.1432-1033.1970.TB01097.X
R. A. Dedonder, J-A. Lepesant, J. Lepesant-Kejzlarová, A. Billault, M. Steinmetz, F. Kunst, Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168. Applied and Environmental Microbiology. ,vol. 33, pp. 989- 993 ,(1977) , 10.1128/AEM.33.4.989-993.1977
Linda F. Chapman, Eugene W. Nester, Gene-Enzyme Relationships in Histidine Biosynthesis in Bacillus subtilis Journal of Bacteriology. ,vol. 97, pp. 1444- 1448 ,(1969) , 10.1128/JB.97.3.1444-1448.1969
Manuel M. Ponce-De-Leon, Lewis I. Pizer, Serine Biosynthesis and Its Regulation in Bacillus subtilis, 12 Journal of Bacteriology. ,vol. 110, pp. 895- 904 ,(1972) , 10.1128/JB.110.3.895-904.1972
M A Vandeyar, S A Zahler, Chromosomal insertions of Tn917 in Bacillus subtilis. Journal of Bacteriology. ,vol. 167, pp. 530- 534 ,(1986) , 10.1128/JB.167.2.530-534.1986
J F Kane, R L Goode, J Wainscott, Multiple mutations in cysA 14 MUTANTS OF Bacillus subtilis. Journal of Bacteriology. ,vol. 121, pp. 204- 211 ,(1975) , 10.1128/JB.121.1.204-211.1975
J Trowsdale, D A Smith, Isolation, characterization, and mapping of Bacillus subtilis 168 germination mutants. Journal of Bacteriology. ,vol. 123, pp. 83- 95 ,(1975) , 10.1128/JB.123.1.83-95.1975
James P. Callahan, Irving P. Crawford, Gerard F. Hess, Patricia S. Vary, Cotransductional Mapping of the trp-his Region of Bacillus megaterium Journal of Bacteriology. ,vol. 154, pp. 1455- 1458 ,(1983) , 10.1128/JB.154.3.1455-1458.1983
C Delorme, S D Ehrlich, P Renault, Histidine biosynthesis genes in Lactococcus lactis subsp. lactis Journal of Bacteriology. ,vol. 174, pp. 6571- 6579 ,(1992) , 10.1128/JB.174.20.6571-6579.1992