Complete relations on fuzzy complete lattices

作者: Jan Konecny , Michal Krupka

DOI: 10.1016/J.FSS.2016.08.007

关键词:

摘要: Abstract We generalize the notion of complete binary relation on lattice to residuated valued ordered sets and show its properties. Then we focus fuzzy tolerances lattices prove they are in one-to-one correspondence with extensive isotone Galois connections. Finally, that any factorized by a tolerance is again lattice.

参考文章(21)
Hongliang Lai, Dexue Zhang, Fundamental study: Complete and directed complete Ω-categories Theoretical Computer Science. ,vol. 388, pp. 1- 25 ,(2007) , 10.1016/J.TCS.2007.09.012
Bernhard Ganter, Rudolf Wille, C. Franzke, Formal Concept Analysis: Mathematical Foundations ,(1998)
George Georgescu, Fuzzy power structures Archive for Mathematical Logic. ,vol. 47, pp. 233- 261 ,(2008) , 10.1007/S00153-008-0082-6
I. Bošnjak, R. Madarász, On the composition of fuzzy power relations Fuzzy Sets and Systems. ,vol. 271, pp. 81- 87 ,(2015) , 10.1016/J.FSS.2014.09.010
Ladislav J. Kohout, Wyllis Bandler, Relational-product architectures for information processing Information Sciences. ,vol. 37, pp. 25- 37 ,(1985) , 10.1016/0020-0255(85)90004-0
George Georgescu, Andrei Popescu, Non-dual fuzzy connections Archive for Mathematical Logic. ,vol. 43, pp. 1009- 1039 ,(2004) , 10.1007/S00153-004-0240-4
Jan Konecny, Isotone fuzzy Galois connections with hedges Information Sciences. ,vol. 181, pp. 1804- 1817 ,(2011) , 10.1016/J.INS.2010.11.011
Lei Fan, A New Approach to Quantitative Domain Theory Electronic Notes in Theoretical Computer Science. ,vol. 45, pp. 77- 87 ,(2001) , 10.1016/S1571-0661(04)80956-3
Qiye Zhang, Weixian Xie, Lei Fan, Fuzzy complete lattices Fuzzy Sets and Systems. ,vol. 160, pp. 2275- 2291 ,(2009) , 10.1016/J.FSS.2008.12.001