Random walks with intersections: Static and dynamic fractal properties

作者: Raf Dekeyser , Amos Maritan , Attilio Stella

DOI: 10.1103/PHYSREVA.36.2338

关键词:

摘要: Static and dynamic properties of the fractal sets generated by free k-tolerant walks are analyzed in detail. A rather complete picture is obtained for set intersections random walks, using correlation functions like probability visiting one or more sites m times. Monte Carlo enumerations, jointly with sophisticated numerical analysis, used to determine dimension self-intersections walks. The results throw new light on Flory argument polymer chains excluded-volume effects; universal behavior explained a coarse-grained reinterpretation approximation. Diffusion same class allows us discuss also their universality respect dynamical properties. In particular, spectral equal (4/3 walk d=2 dimensions.

参考文章(23)
Elliott W. Montroll, George H. Weiss, Random Walks on Lattices. II Journal of Mathematical Physics. ,vol. 6, pp. 167- 181 ,(1965) , 10.1063/1.1704269
L Turban, Generalised self-avoiding walk Journal of Physics A. ,vol. 16, ,(1983) , 10.1088/0305-4470/16/17/002
S. Alexander, R. Orbach, Density of states on fractals : « fractons » Journal de Physique Lettres. ,vol. 43, pp. 625- 631 ,(1982) , 10.1051/JPHYSLET:019820043017062500
R. Rammal, G. Toulouse, Random walks on fractal structures and percolation clusters Journal de Physique Lettres. ,vol. 44, pp. 13- 22 ,(1983) , 10.1051/JPHYSLET:0198300440101300
H. J. Stapleton, J. P. Allen, C. P. Flynn, D. G. Stinson, S. R. Kurtz, Fractal Form of Proteins Physical Review Letters. ,vol. 45, pp. 1456- 1459 ,(1980) , 10.1103/PHYSREVLETT.45.1456
Jayanth R. Banavar, A. Brooks Harris, Joel Koplik, Resistance of Random Walks Physical Review Letters. ,vol. 51, pp. 1115- 1118 ,(1983) , 10.1103/PHYSREVLETT.51.1115
S Havlin, G H Weiss, D Ben-Avraham, D Movshovitz, Structure of clusters generated by random walks Journal of Physics A. ,vol. 17, ,(1984) , 10.1088/0305-4470/17/15/006
S. J. Taylor, The Hausdorff α-dimensional measure of Brownian paths in n -space Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 49, pp. 31- 39 ,(1953) , 10.1017/S0305004100028000
P. Erdős, S. J. Taylor, Some problems concerning the structure of random walk paths Acta Mathematica Hungarica. ,vol. 11, pp. 137- 162 ,(1963) , 10.1007/BF02020631
David Brydges, Jürg Fröhlich, Thomas Spencer, The random-walk representation of classical spin systems and correlation inequalities Communications in Mathematical Physics. ,vol. 83, pp. 123- 150 ,(1982) , 10.1007/BF01947075