Galerkin/Least-Squares-FEM and Anisotropic Mesh Refinement

作者: A. Auge , G. Lube , D. Weiß

DOI: 10.1007/978-3-663-14246-1_1

关键词:

摘要: The Galerkin /least-squares finite element method is considered as a tool for solving singularly perturbed partial differential equations of elliptic type on adaptively refined grids. Local error estimates in subdomains away from boundary and interior layers are uniformly valid with respect to the small parameter. Boundary can be resolved using locally anisotropic mesh refinement. Numerical examples given scalar convection-diffusion incompressible Navier—Stokes flow problems.

参考文章(10)
Kenneth Eriksson, Claes Johnson, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems Mathematics of Computation. ,vol. 60, pp. 167- 18812 ,(1993) , 10.1090/S0025-5718-1993-1149289-9
G.I. Shishkin, Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer Ussr Computational Mathematics and Mathematical Physics. ,vol. 29, pp. 1- 10 ,(1991) , 10.1016/0041-5553(89)90109-2
C. Johnson, A. H. Schatz, L. B. Wahlbin, Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods Mathematics of Computation. ,vol. 49, pp. 25- 38 ,(1987) , 10.1090/S0025-5718-1987-0890252-8
Leopoldo P. Franca, Sergio L. Frey, Thomas J.R. Hughes, Stabilized finite element methods. I: Application to the advective-diffusive model Applied Mechanics and Engineering. ,vol. 95, pp. 253- 276 ,(1992) , 10.1016/0045-7825(92)90143-8
Ralf Kornhuber, Rainer Roitzsch, On adaptive grid refinement in the presence of internal or boundary layers Impact of Computing in Science and Engineering. ,vol. 2, pp. 40- 72 ,(1990) , 10.1016/0899-8248(90)90003-S
Leopoldo P. Franca, Thomas J. R. Hughes, Rolf Stenberg, Stabilized Finite Element Methods Computer Methods in Applied Mechanics and Engineering. pp. 87- 108 ,(1993) , 10.1017/CBO9780511574856.005