On adaptive grid refinement in the presence of internal or boundary layers

作者: Ralf Kornhuber , Rainer Roitzsch

DOI: 10.1016/0899-8248(90)90003-S

关键词:

摘要: Abstract We propose an anisotropic refinement strategy which is specially designed for the efficient numerical resolution of internal and boundary layers. This based on directed pairs triangles together with adaptive multilevel grid orientation. Compared to usual methods, new ends up in more stable accurate solutions at much less computational cost. demonstrated by several examples.

参考文章(13)
R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations Mathematics of Computation. ,vol. 44, pp. 283- 301 ,(1985) , 10.1090/S0025-5718-1985-0777265-X
Randolph E. Bank, Todd F. Dupont, Harry Yserentant, The hierarchical basis multigrid method Numerische Mathematik. ,vol. 52, pp. 427- 458 ,(1988) , 10.1007/BF01462238
Philippe G. Ciarlet, J. T. Oden, The Finite Element Method for Elliptic Problems ,(1978)
R. Courant, K. Friedrichs, H. Lewy, �ber die partiellen Differenzengleichungen der mathematischen Physik Mathematische Annalen. ,vol. 100, pp. 32- 74 ,(1928) , 10.1007/BF01448839
Akira Mizukami, Thomas J.R. Hughes, A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle☆ Computer Methods in Applied Mechanics and Engineering. ,vol. 50, pp. 181- 193 ,(1985) , 10.1016/0045-7825(85)90089-1
P Wesseling, Cell-centered multigrid for interface problems Journal of Computational Physics. ,vol. 79, pp. 85- 91 ,(1988) , 10.1016/0021-9991(88)90005-8
Wolfgang Hackbusch, Multi-Grid Methods and Applications ,(1985)