PARALLEL AND DISTRIBUTED MOESP COMPUTATIONAL SYSTEM'S MODELLING

作者: C. P. Bottura , G. Barreto

DOI:

关键词:

摘要: In this work a parallel numerical procedure for determining state space realization linear dynamic system representing input-output multivariate data sequences is developed. The presented methodology emphasizes implementations that make RQ factorization and singular value decomposition subroutines utilizations. A sequential execution of the algorithm made implementation on distributed memory with an asynchronous parallelization strategy over workstations network proposed executed. Comparisons between processings identification are presented.

参考文章(11)
J. Dongarra, L. S. Blackford, J. Demmel, A. Petitet, I. Dhillon, E. D'Azevedo, R. C. Whaley, G. Henry, K. Stanley, J. Choi, S. Hammarling, A. Cleary, D. Walker, ScaLAPACK Users' Guide ,(1987)
Gene Golub, James M. Ortega, Scientific computing: an introduction with parallel computing Academic Press. ,(1993)
J.N. Tsitsiklis, D.P. Bertsekas, Parallel and distributed computation Old Tappan, NJ (USA); Prentice Hall Inc.. ,(1989)
K. Jainandunsing, E. F. Deprettere, A new class of parallel algorithms for solving systems of linear equations Siam Journal on Scientific and Statistical Computing. ,vol. 10, pp. 880- 912 ,(1989) , 10.1137/0910051
Marc Moonen, Bart De Moor, Lieven Vandenberghe, Joos Vandewalle, On- and off-line identification of linear state-space models International Journal of Control. ,vol. 49, pp. 219- 232 ,(1989) , 10.1080/00207178908559631
Greg Henry, Robert van de Geijn, Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality SIAM Journal on Scientific Computing. ,vol. 17, pp. 870- 883 ,(1996) , 10.1137/0917056
Greg Henry, David Watkins, Jack Dongarra, A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures SIAM Journal on Scientific Computing. ,vol. 24, pp. 284- 311 ,(2002) , 10.1137/S1064827597325165
C.P. Bottura, G. Barreto, M.J. Bordon, A.D.R. Tamariz, Parallel and distributed computational data modeling via Verhaegen and Dewilde's subspace method american control conference. ,vol. 3, pp. 1792- 1796 ,(2000) , 10.1109/ACC.2000.879510