Chapter 12 – Computational Epigenetics

作者: Loo Keat Wei , Anthony Au

DOI: 10.1016/B978-0-12-805388-1.00012-2

关键词:

摘要: Epigenetics has emerged as a rapidly growing field for studying the heritable alterations involved in regulation of gene expression patterns that are not due to changes DNA sequence. To which, epigenetic mechanisms, such methylation and histone modifications, can modulate chromatin structure regulation, during cellular development differentiation higher organisms. Recent advancements high-throughput profiling technologies, including bisulfite microarray, sequencing, affinity enrichment, ChIP-on-chip, ChIP have generated vast amounts epigenomic data. In turn, developments bioinformatics databases software tools thus contributed significantly substantial, growing, interest research. This chapter reviews key aspects techniques computational epigenetics. particular, major tools, databases, strategies epigenetics analysis modifications been summarized.

参考文章(185)
Yuanyuan Li, Trygve O. Tollefsbol, DNA methylation detection: bisulfite genomic sequencing analysis Methods of Molecular Biology. ,vol. 791, pp. 11- 21 ,(2011) , 10.1007/978-1-61779-316-5_2
Jeffery Li, Travers Ching, Sijia Huang, Lana X Garmire, Using epigenomics data to predict gene expression in lung cancer BMC Bioinformatics. ,vol. 16, pp. 1- 12 ,(2015) , 10.1186/1471-2105-16-S5-S10
Anna Díez-Villanueva, Izaskun Mallona, Miguel A. Peinado, Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer Epigenetics & Chromatin. ,vol. 8, pp. 22- 22 ,(2015) , 10.1186/S13072-015-0014-8
Zhen Wang, Xianfeng Li, Yi Jiang, Qianzhi Shao, Qi Liu, BingYu Chen, Dongsheng Huang, swDMR: A Sliding Window Approach to Identify Differentially Methylated Regions Based on Whole Genome Bisulfite Sequencing. PLOS ONE. ,vol. 10, ,(2015) , 10.1371/JOURNAL.PONE.0132866
Jiamu Du, Lianna M. Johnson, Steven E. Jacobsen, Dinshaw J. Patel, DNA methylation pathways and their crosstalk with histone methylation Nature Reviews Molecular Cell Biology. ,vol. 16, pp. 519- 532 ,(2015) , 10.1038/NRM4043
J. Choi, K.-T. Kim, A. Huh, S. Kwon, C. Hong, F. O. Asiegbu, J. Jeon, Y.-H. Lee, dbHiMo: a web-based epigenomics platform for histone-modifying enzymes. Database. ,vol. 2015, pp. 052- ,(2015) , 10.1093/DATABASE/BAV052
Christoph Bock, Analysing and interpreting DNA methylation data. Nature Reviews Genetics. ,vol. 13, pp. 705- 719 ,(2012) , 10.1038/NRG3273
Lily Yan Wang, Panwen Wang, Mulin Jun Li, Jing Qin, Xiaowo Wang, Michael Q. Zhang, Junwen Wang, EpiRegNet: constructing epigenetic regulatory network from high throughput gene expression data for humans Epigenetics. ,vol. 6, pp. 1505- 1512 ,(2011) , 10.4161/EPI.6.12.18176
H. Huang, A. M. Maertens, E. M. Hyland, J. Dai, A. Norris, J. D. Boeke, J. S. Bader, HistoneHits: A database for histone mutations and their phenotypes Genome Research. ,vol. 19, pp. 674- 681 ,(2009) , 10.1101/GR.083402.108