Automated Machine Learning for Healthcare and Clinical Notes Analysis

作者: Mostafa Rahimi Azghadi , Akram Mustafa

DOI: 10.3390/COMPUTERS10020024

关键词:

摘要: … for medical notes processing. Next, we survey relevant ML research for clinical notes and analyze … Since this work is classifying patients into more than two categories, it is a multi-class …

参考文章(116)
Athanasios Tsanas, Max Little, Patrick McSharry, Lorraine Ramig, None, Accurate telemonitoring of Parkinson’s disease progression by non-invasive speech tests Nature Precedings. ,vol. 4, pp. 1- 1 ,(2009) , 10.1038/NPRE.2009.3920.1
Subramani Mani, Yukun Chen, Tom Elasy, Warren Clayton, Joshua Denny, None, Type 2 Diabetes Risk Forecasting from EMR Data using Machine Learning american medical informatics association annual symposium. ,vol. 2012, pp. 606- 615 ,(2012)
Cédrick Fairon, Julia Medori, Machine learning and features selection for semi-automatic ICD-9-CM encoding north american chapter of the association for computational linguistics. pp. 84- 89 ,(2010)
Isabelle Guyon, Kristin Bennett, Gavin Cawley, Hugo Jair Escalante, Sergio Escalera, Tin Kam Ho, Nuria Macia, Bisakha Ray, Mehreen Saeed, Alexander Statnikov, Evelyne Viegas, Design of the 2015 ChaLearn AutoML challenge international joint conference on neural network. pp. 1- 8 ,(2015) , 10.1109/IJCNN.2015.7280767
Philipp Fischer, Thomas Brox, None, U-Net: Convolutional Networks for Biomedical Image Segmentation medical image computing and computer assisted intervention. pp. 234- 241 ,(2015) , 10.1007/978-3-319-24574-4_28
Arturo López Pineda, Ye Ye, Shyam Visweswaran, Gregory F. Cooper, Michael M. Wagner, Fuchiang (Rich) Tsui, Comparison of machine learning classifiers for influenza detection from emergency department free-text reports Journal of Biomedical Informatics. ,vol. 58, pp. 60- 69 ,(2015) , 10.1016/J.JBI.2015.08.019
Richárd Farkas, György Szarvas, Automatic construction of rule-based ICD-9-CM coding systems BMC Bioinformatics. ,vol. 9, pp. 1- 9 ,(2008) , 10.1186/1471-2105-9-S3-S10
Irena Spasić, Jacqueline Livsey, John A. Keane, Goran Nenadić, Text mining of cancer-related information: review of current status and future directions International Journal of Medical Informatics. ,vol. 83, pp. 605- 623 ,(2014) , 10.1016/J.IJMEDINF.2014.06.009