Positons of the modified Korteweg de Vries equation

作者: A. A. Stahlhofen

DOI: 10.1002/ANDP.19925040708

关键词:

摘要: The concept of positons, i. e. certain multiparametric solutions the Korteweg de Vries equation with new properties, is extended to modified equation. It shown that essential features positons carry over this case; collision solitary-wave-positon interaction and simple generalizations are discussed in detail. Suggestions for future research possible applications present work sketched

参考文章(11)
H. Grosse, New solitons connected to the Dirac equation Physics Reports. ,vol. 134, pp. 297- 304 ,(1986) , 10.1016/0370-1573(86)90053-0
Y. Nogami, F. M. Toyama, Transparent potential for the one-dimensional Dirac equation Physical Review A. ,vol. 45, pp. 5258- 5261 ,(1992) , 10.1103/PHYSREVA.45.5258
H. Grosse, Solitons of the modified KdV equation Letters in Mathematical Physics. ,vol. 8, pp. 313- 319 ,(1984) , 10.1007/BF00400502
S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, V.B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction Physics Letters A. ,vol. 63, pp. 205- 206 ,(1977) , 10.1016/0375-9601(77)90875-1
B Fuchssteiner, T Schulze, S Carillo, Explicit solutions for the Harry Dym equation Journal of Physics A. ,vol. 25, pp. 223- 230 ,(1992) , 10.1088/0305-4470/25/1/025
H. Behncke, Absolute continuity of Hamiltonians with von Neumann Wigner potentials Manuscripta Mathematica. ,vol. 111, pp. 373- 384 ,(1991) , 10.1007/BF02568400
D. B. Hinton, M. Klaus, J. K. Shaw, Embedded Half-Bound States for Potentials of Wigner-Von Neumann Type Proceedings of the London Mathematical Society. ,vol. s3-62, pp. 607- 646 ,(1991) , 10.1112/PLMS/S3-62.3.607
N. N. Romanova, N-Soliton solution “on a pedestal” of the modified Korteweg-de Vries equation Theoretical and Mathematical Physics. ,vol. 39, pp. 415- 421 ,(1979) , 10.1007/BF01014919
Miki Wadati, Kenji Ohkuma, Multiple-Pole Solutions of the Modified Korteweg-de Vries Equation Journal of the Physical Society of Japan. ,vol. 51, pp. 2029- 2035 ,(1982) , 10.1143/JPSJ.51.2029