Complexitons of the modified KdV equation by Darboux transformation

作者: Hongxia Wu , Yunbo Zeng , Tianyou Fan

DOI: 10.1016/J.AMC.2007.06.011

关键词:

摘要: Abstract Darboux transformation (DT), a comprehensive approach to construct the explicit solutions of nonlinear evolutionary equation, is applied new complexiton solution negative mKdV equation. We find that related single complex spectral parameter and it completely different from breather for positive Consequently, we generalize concept KdV equation In addition, relationship known clarified multi-complexiton solution, multi-complexiton–positon, multi-complexiton–negaton multi-complexiton–soliton are obtained in uniform manner by DT. The interaction soliton also discussed detail. It shown remain unchanged except phase shifts after their interaction. At same time, superreflectionless property one-positon potential

参考文章(19)
Karl E. Lonngren, Ion acoustic soliton experiments in a plasma Optical and Quantum Electronics. ,vol. 30, pp. 615- 630 ,(1998) , 10.1023/A:1006910004292
Ryogo Hirota, Exact Solution of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons Journal of the Physical Society of Japan. ,vol. 33, pp. 1456- 1458 ,(1972) , 10.1143/JPSJ.33.1456
A A Stahlhofen, Supertransparent potentials for the Dirac equation Journal of Physics A: Mathematical and General. ,vol. 27, pp. 8279- 8290 ,(1994) , 10.1088/0305-4470/27/24/032
Sunil Barran, Mikhail Kovalyov, A note on slowly decaying solutions of the defocusing nonlinear Schrödinger equation Journal of Physics A. ,vol. 32, pp. 6121- 6125 ,(1999) , 10.1088/0305-4470/32/34/301
Wen Xiu Ma, Complexiton solutions to the Korteweg–de Vries equation Physics Letters A. ,vol. 301, pp. 35- 44 ,(2002) , 10.1016/S0375-9601(02)00971-4
A H Khater, O H El-Kalaawy, D K Callebaut, Bäcklund Transformations and Exact Solutions for Alfvén Solitons in a Relativistic Electron–Positron Plasma Physica Scripta. ,vol. 58, pp. 545- 548 ,(1998) , 10.1088/0031-8949/58/6/001
V.B. Matveev, Positon-positon and soliton-positon collisions: KdV case Physics Letters A. ,vol. 166, pp. 209- 212 ,(1992) , 10.1016/0375-9601(92)90363-Q
Veronique Ziegler, John Dinkel, Claude Setzer, Karl E. Lonngren, On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line Chaos Solitons & Fractals. ,vol. 12, pp. 1719- 1728 ,(2001) , 10.1016/S0960-0779(00)00137-5
C Rasinariu, U Sukhatme, Avinash Khare, Negaton and positon solutions of the KdV and mKdV hierarchy Journal of Physics A. ,vol. 29, pp. 1803- 1823 ,(1996) , 10.1088/0305-4470/29/8/027
A. A. Stahlhofen, Positons of the modified Korteweg de Vries equation Annalen der Physik. ,vol. 504, pp. 554- 569 ,(1992) , 10.1002/ANDP.19925040708