Tables of the Freeman-Tukey Transformations for the Binomial and Poisson Distributions

作者: Frederick Mosteller , Cleo Youtz

DOI: 10.1007/978-0-387-44956-2_20

关键词:

摘要: We present a table of the Freeman-Tukey variance stabilizing arc-sine transformation for binomial distribution together with properties transformation. Entries in are $$ \theta = \frac{1} {2}\left\{ {\arcsin \surd \left( {\frac{x} {{n + 1}}} \right) \arcsin {\frac{{x 1}} \right)} \right\},$$ where n is sample size and x number successes observed experiment. Values θ given degrees, to two decimal places, 1[1]50 0[1]n.

参考文章(8)
Susan T. Fiske, Daniel T. Gilbert, Gardner Lindzey, Handbook of social psychology ,(1935)
Shanti S. Gupta, Milton Sobel, On Selecting a Subset Which Contains All Populations Better Than a Standard Annals of Mathematical Statistics. ,vol. 29, pp. 235- 244 ,(1958) , 10.1214/AOMS/1177706721
John W. Fertig, Tables of the Binomial Probability Distribution American Journal of Public Health and the Nations Health. ,vol. 41, pp. 1011- 1012 ,(1951) , 10.2105/AJPH.41.8_PT_1.1011
Murray F. Freeman, John W. Tukey, Transformations Related to the Angular and the Square Root Annals of Mathematical Statistics. ,vol. 21, pp. 607- 611 ,(1950) , 10.1214/AOMS/1177729756
W. L. STEVENS, TABLES OF THE ANGULAR TRANSFORMATION Biometrika. ,vol. 40, pp. 70- 73 ,(1953) , 10.1093/BIOMET/40.1-2.70
Columbia Uni., Selected Techniques Of Statistical Analysis Mcgraw-Hill; New York. ,(1947)
Edward C. Molina, Poisson's exponential binomial limit ,(1942)