Fractional integral associated to generalized cookie-cutter set and its physical interpretation

作者: Zu-Guo Yu , Fu-Yao Ren , Ji Zhou

DOI: 10.1088/0305-4470/30/15/036

关键词:

摘要: … set is a generalized cookie-cutter set on [0, T ]… cookie-cutter set. It is determined by ln P1/ ln ξ1 of self-similar measure (or infinite self-similar measure) µ on this generalized cookie-cutter …

参考文章(8)
R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry Physica Status Solidi B-basic Solid State Physics. ,vol. 133, pp. 425- 430 ,(1986) , 10.1002/PSSB.2221330150
K. Binder, A. P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions Reviews of Modern Physics. ,vol. 58, pp. 801- 976 ,(1986) , 10.1103/REVMODPHYS.58.801
Massimiliano Giona, H. Eduardo Roman, Fractional diffusion equation for transport phenomena in random media Physica A-statistical Mechanics and Its Applications. ,vol. 185, pp. 87- 97 ,(1992) , 10.1016/0378-4371(92)90441-R
H. Eduardo Roman, Structure of random fractals and the probability distribution of random walks. Physical Review E. ,vol. 51, pp. 5422- 5425 ,(1995) , 10.1103/PHYSREVE.51.5422
R. R. Nigmatullin, Fractional integral and its physical interpretation Theoretical and Mathematical Physics. ,vol. 90, pp. 242- 251 ,(1992) , 10.1007/BF01036529
H E Roman, M Giona, Fractional diffusion equation on fractals: three-dimensional case and scattering function Journal of Physics A. ,vol. 25, pp. 2107- 2117 ,(1992) , 10.1088/0305-4470/25/8/024
R. R. Nigmatullin, On the Theory of Relaxation for Systems with “Remnant” Memory Physica Status Solidi B-basic Solid State Physics. ,vol. 124, pp. 389- 393 ,(1984) , 10.1002/PSSB.2221240142