Superparsing: Scalable Nonparametric Image Parsing with Superpixels

作者: Joseph Tighe , Svetlana Lazebnik

DOI: 10.1007/S11263-012-0574-Z

关键词:

摘要: This paper presents a simple and effective nonparametric approach to the problem of image parsing, or labeling regions (in our case, superpixels produced by bottom-up segmentation) with their categories. requires no training, it can easily scale datasets tens thousands images hundreds labels. It works scene-level matching global descriptors, followed superpixel-level local features efficient Markov random field (MRF) optimization for incorporating neighborhood context. Our MRF setup also compute simultaneous into semantic classes (e.g., tree, building, car) geometric (sky, vertical, ground). system outperforms state-of-the-art non-parametric method based on SIFT Flow dataset 2,688 33 In addition, we report per-pixel rates larger 15,150 170 To knowledge, this is first complete evaluation parsing size, establishes new benchmark problem.

参考文章(48)
Richard Socher, Andrew Y. Ng, Cliff C. Lin, Chris Manning, Parsing Natural Scenes and Natural Language with Recursive Neural Networks international conference on machine learning. pp. 129- 136 ,(2011)
Geremy Heitz, Daphne Koller, Learning Spatial Context: Using Stuff to Find Things Lecture Notes in Computer Science. pp. 30- 43 ,(2008) , 10.1007/978-3-540-88682-2_4
Jamie Shotton, John Winn, Carsten Rother, Antonio Criminisi, TextonBoost : joint appearance, shape and context modeling for multi-class object recognition and segmentation european conference on computer vision. ,vol. 1, pp. 1- 15 ,(2006) , 10.1007/11744023_1
Aude Oliva, Antonio Torralba, Building the gist of a scene: the role of global image features in recognition. Progress in Brain Research. ,vol. 155, pp. 23- 36 ,(2006) , 10.1016/S0079-6123(06)55002-2
Joseph Tighe, Svetlana Lazebnik, Superparsing: scalable nonparametric image parsing with superpixels european conference on computer vision. pp. 352- 365 ,(2010) , 10.1007/978-3-642-15555-0_26
Ľubor Ladický, Paul Sturgess, Karteek Alahari, Chris Russell, Philip H. S. Torr, What, Where and How Many? Combining Object Detectors and CRFs Computer Vision – ECCV 2010. pp. 424- 437 ,(2010) , 10.1007/978-3-642-15561-1_31
Varsha Hedau, Derek Hoiem, David Forsyth, Thinking Inside the Box: Using Appearance Models and Context Based on Room Geometry Computer Vision – ECCV 2010. pp. 224- 237 ,(2010) , 10.1007/978-3-642-15567-3_17
Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, Roberto Cipolla, Segmentation and Recognition Using Structure from Motion Point Clouds Lecture Notes in Computer Science. pp. 44- 57 ,(2008) , 10.1007/978-3-540-88682-2_5
Anand Mishra, Karteek Alahari, Cv Jawahar, Scene Text Recognition using Higher Order Language Priors british machine vision conference. pp. 1- 11 ,(2009) , 10.5244/C.26.127
Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros, Ensemble of exemplar-SVMs for object detection and beyond international conference on computer vision. pp. 89- 96 ,(2011) , 10.1109/ICCV.2011.6126229