Polynomial robust stability analysis for $H(\textrm{div})$-conforming finite elements for the Stokes equations

作者: Joachim Schöberl , Philip L. Lederer

DOI:

关键词:

摘要: In this work we consider a discontinuous Galerkin method for the discretization of Stokes problem. We use $H(\textrm{div})$-conforming finite elements as they provide major benefits such exact mass conservation and pressure-independent error estimates. The main aspect lies in analysis high order approximations. show that considered is uniformly stable with respect to polynomial $k$ provides optimal estimates $ \| \boldsymbol{u} - \boldsymbol{u}_h \|_{1_h} + \Pi^{Q_h}p-p_h \le c \left( h/k \right)^s \|_{s+1} $. To derive those estimates, prove $k$-robust LBB condition. This proof based on $H^2$-stable extension operator. operator itself interest numerical $C^0$-continuous methods $4^{th}$ problems.

参考文章(43)
George Karniadakis, Spencer J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics ,(2005)
Jörgen Löfström, Jöran Bergh, Interpolation Spaces: An Introduction ,(2011)
Jean Donea, Antonio Huerta, Finite Element Methods for Flow Problems ,(2003)
Roland Glowinski, Finite element methods for incompressible viscous flow Handbook of Numerical Analysis. ,vol. 9, pp. 3- 1176 ,(2003) , 10.1016/S1570-8659(03)09003-3
C. BERNARDI, Y. MADAY, UNIFORM INF–SUP CONDITIONS FOR THE SPECTRAL DISCRETIZATION OF THE STOKES PROBLEM Mathematical Models and Methods in Applied Sciences. ,vol. 09, pp. 395- 414 ,(1999) , 10.1142/S0218202599000208
Bernardo Cockburn, Guido Kanschat, Dominik Schötzau, Christoph Schwab, Local Discontinuous Galerkin Methods for the Stokes System SIAM Journal on Numerical Analysis. ,vol. 40, pp. 319- 343 ,(2002) , 10.1137/S0036142900380121
Mark Ainsworth, Leszek Demkowicz, Explicit polynomial preserving trace liftings on a triangle Mathematische Nachrichten. ,vol. 282, pp. 640- 658 ,(2009) , 10.1002/MANA.200610762