Minimum Distance Estimators for Location and Goodness of Fit

作者: Dennis D. Boos

DOI: 10.1080/01621459.1981.10477701

关键词:

摘要: Abstract A weighted Cramer-von Mises distance between the empirical distribution function and assumed model F0(x - θ) is minimized to produce estimators θ n that are asymptotically normal. If weight taken proportional (- ln f 0)″/f 0 , then efficient has appropriate loss of one degree freedom. Special attention focused on limiting this latter goodness-of-fit statistic in both null alternative situations.

参考文章(21)
J. Durbin, M. Knott, Components of Cramér-Von Mises Statistics. I Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 34, pp. 290- 307 ,(1972) , 10.1111/J.2517-6161.1972.TB00908.X
Gavin G. Gregory, Large Sample Theory for $U$-Statistics and Tests of Fit Annals of Statistics. ,vol. 5, pp. 110- 123 ,(1977) , 10.1214/AOS/1176343744
E. Bolthausen, Convergence in distribution of minimum-distance estimators Metrika. ,vol. 24, pp. 215- 227 ,(1977) , 10.1007/BF01893411
Peter J. Huber, Robust statistical procedures ,(1977)
T. W. Anderson, D. A. Darling, Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes Annals of Mathematical Statistics. ,vol. 23, pp. 193- 212 ,(1952) , 10.1214/AOMS/1177729437
Ronald Pyke, Galen R. Shorack, Weak Convergence of a Two-sample Empirical Process and a New Approach to Chernoff-Savage Theorems Annals of Mathematical Statistics. ,vol. 39, pp. 755- 771 ,(1968) , 10.1214/AOMS/1177698309
P. V. Rao, Eugene F. Schuster, Ramon C. Littell, Estimation of Shift and Center of Symmetry Based on Kolmogorov-Smirnov Statistics Annals of Statistics. ,vol. 3, pp. 862- 873 ,(1975) , 10.1214/AOS/1176343187
Samuel Kotz, N. Balakrishnan, Norman Lloyd Johnson, Continuous univariate distributions ,(1994)
D. A. Darling, The Cramer-Smirnov Test in the Parametric Case Annals of Mathematical Statistics. ,vol. 26, pp. 1- 20 ,(1955) , 10.1214/AOMS/1177728589
W. C. Parr, T. De Wet, On minimum cramer-von mises-norm parameter estimation Communications in Statistics-theory and Methods. ,vol. 10, pp. 1149- 1166 ,(1981) , 10.1080/03610928108828100