An opportunistic global path planner

作者: J.F. Canny , M.C. Lin

DOI: 10.1109/ROBOT.1990.126229

关键词:

摘要: A robot planning algorithm that constructs a global skeleton of free-space by incremental local methods is described. The curves the are loci maxima an artificial potential field directly proportional to distance from obstacles. method has advantage fast convergence in uncluttered environments, but it also deterministic and efficient escaping extremal points function. authors present general algorithm, for configuration spaces any dimension, describe instantiations robots with two three degrees freedom. >

参考文章(12)
Christopher Gibson, Construction of canonical stratifications Springer Berlin Heidelberg. pp. 8- 34 ,(1976) , 10.1007/BFB0095246
Eduard J. N. Looijenga, Christopher G. Gibson, Andrew A. du Plessis, Klaus Wirthmüller, Topological Stability of Smooth Mappings ,(1976)
John Canny, Generalized Characteristic Polynomials international symposium on symbolic and algebraic computation. pp. 293- 299 ,(1988) , 10.1007/3-540-51084-2_28
Jean-Claude Latombe, Bruno Langlois, Jérôme Barraquand, Robot motion planning with many degrees of freedom and dynamic constraints international symposium on robotics. pp. 435- 444 ,(1991)
Dinesh Manocha, John Canny, Efficient techniques for multipolynomial resultant algorithms international symposium on symbolic and algebraic computation. pp. 86- 95 ,(1991) , 10.1145/120694.120706
J. Milnor, On the Betti numbers of real varieties Proceedings of the American Mathematical Society. ,vol. 15, pp. 275- 280 ,(1964) , 10.1090/S0002-9939-1964-0161339-9
John Canny, Constructing roadmaps of semi-algebraic sets I: completeness Artificial Intelligence. ,vol. 37, pp. 203- 222 ,(1988) , 10.1016/0004-3702(88)90055-0
Oussama Khatib, Real-time obstacle avoidance for manipulators and mobile robots The International Journal of Robotics Research. ,vol. 5, pp. 90- 98 ,(1986) , 10.1177/027836498600500106
Tomás Lozano-Pérez, Michael A. Wesley, An algorithm for planning collision-free paths among polyhedral obstacles Communications of the ACM. ,vol. 22, pp. 560- 570 ,(1979) , 10.1145/359156.359164