MCMC Techniques for Parameter Estimation of ODE Based Models in Systems Biology

作者: Gloria I. Valderrama-Bahamóndez , Holger Fröhlich

DOI: 10.3389/FAMS.2019.00055

关键词:

摘要: Ordinary differential equation systems (ODEs) are frequently used for dynamical system modelling in many science fields such as economics, physics, engineering, and biology. A special challenge biology is that ODE typically contain kinetic rate parameters, which unknown have to be estimated from data. However, non-linearity of together with noise the data raise severe identifiability issues. Hence, Markov Chain Monte Carlo (MCMC) approaches been estimate posterior distributions parameters. designing a good MCMC sampler high dimensional multi-modal parameter remains challenging task. Here we performed systematic comparison different techniques this purpose using five public domain models. The included Metropolis-Hastings, parallel tempering MCMC, adaptive MCMC. In conclusion, found specifically produce superior estimates while benefitting inclusion our suggested informative Bayesian priors parameters variance.

参考文章(41)
Stephen P Brooks, Gareth O Roberts, None, Convergence assessment techniques for Markov chain Monte Carlo Statistics and Computing. ,vol. 8, pp. 319- 335 ,(1998) , 10.1023/A:1008820505350
Maksat Ashyraliyev, Yves Fomekong-Nanfack, Jaap A. Kaandorp, Joke G. Blom, Systems biology: parameter estimation for biochemical models FEBS Journal. ,vol. 276, pp. 886- 902 ,(2009) , 10.1111/J.1742-4658.2008.06844.X
Youssef M. Marzouk, Natesh S. Pillai, Patrick R. Conrad, Aaron Smith, Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations Journal of the American Statistical Association. ,vol. 111, pp. 1591- 1607 ,(2016) , 10.1080/01621459.2015.1096787
Cecilia Brännmark, Robert Palmér, S. Torkel Glad, Gunnar Cedersund, Peter Strålfors, Mass and Information Feedbacks through Receptor Endocytosis Govern Insulin Signaling as Revealed Using a Parameter-free Modeling Framework Journal of Biological Chemistry. ,vol. 285, pp. 20171- 20179 ,(2010) , 10.1074/JBC.M110.106849
Ida Schomburg, Antje Chang, Oliver Hofmann, Christian Ebeling, Frank Ehrentreich, Dietmar Schomburg, BRENDA: a resource for enzyme data and metabolic information Trends in Biochemical Sciences. ,vol. 27, pp. 54- 56 ,(2002) , 10.1016/S0968-0004(01)02027-8
A. Raue, T. Maiwald, J. Timmer, C. Kreutz, U. Klingmüller, Addressing parameter identifiability by model-based experimentation Iet Systems Biology. ,vol. 5, pp. 120- 130 ,(2011) , 10.1049/IET-SYB.2010.0061
John D. Mathews, Christopher T. McCaw, Jodie McVernon, Emma S. McBryde, James M. McCaw, A Biological Model for Influenza Transmission: Pandemic Planning Implications of Asymptomatic Infection and Immunity PLoS ONE. ,vol. 2, pp. e1220- ,(2007) , 10.1371/JOURNAL.PONE.0001220
Valentina Raia, Marcel Schilling, Martin Böhm, Bettina Hahn, Andreas Kowarsch, Andreas Raue, Carsten Sticht, Sebastian Bohl, Maria Saile, Peter Möller, Norbert Gretz, Jens Timmer, Fabian Theis, Wolf-Dieter Lehmann, Peter Lichter, Ursula Klingmüller, Dynamic mathematical modeling of IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets Cancer Research. ,vol. 71, pp. 693- 704 ,(2011) , 10.1158/0008-5472.CAN-10-2987
Ciyou Zhu, Richard H. Byrd, Peihuang Lu, Jorge Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization ACM Transactions on Mathematical Software. ,vol. 23, pp. 550- 560 ,(1997) , 10.1145/279232.279236