A Fixed Point Approach to Stability of Quintic Functional Equations in Modular Spaces

作者: MOHAMMAD BAGHER GHAEMI , MEHDI CHOUBIN , GHADIR SADEGHI , MADJID ESHAGHI GORDJI

DOI: 10.5666/KMJ.2015.55.2.313

关键词:

摘要: In this paper, we present a flxed point method to prove generalized Hyers{ Ulam stability of the systems quadratic-cubic functional equations with constant coef- flcients in modular spaces.

参考文章(50)
M. Eshaghi Gordji, M.B. Savadkouhi, Stability of a mixed type cubic–quartic functional equation in non-Archimedean spaces Applied Mathematics Letters. ,vol. 23, pp. 1198- 1202 ,(2010) , 10.1016/J.AML.2010.05.011
Shôzô Koshi, Tetsuya Shimogaki, ON F-NORMS OF QUASI-MODULAR SPACES Hokkaido Mathematical Journal. ,vol. 15, pp. 202- 218 ,(1961) , 10.14492/HOKMJ/1530756196
Lech Maligranda, Orlicz spaces and interpolation Departamento de Matemática, Universidade Estadual de Campinas. ,(1989)
秀五郎 中野, Modulared semi-ordered linear spaces Maruzen Co.. ,(1950)
Soon-Mo Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application Proceedings of the American Mathematical Society. ,vol. 126, pp. 3137- 3143 ,(1998) , 10.1090/S0002-9939-98-04680-2
Stanislaw M. Ulam, Problems in modern mathematics ,(1964)
Donald H. Hyers, George Isac, Themistocles M. Rassias, Stability of functional equations in several variables ,(1998)
W.A.J. Luxemburg, Banach function spaces Van Gorcum. ,(1955)