Power series solutions for non-linear PDE's

作者: F. Aroca , J. Cano , F. Jung

DOI: 10.1145/860854.860863

关键词:

摘要: This paper describes an algorithmic method iterative for searching power series solutions of a partial differential equation. Power expansions considered have support in some convex cone RN. We do this by introducing N-variables analog the Newton polygon construction, used case ordinary equations.

参考文章(16)
Fuensanta Aroca Bisquert, Métodos algebraicos en ecuaciones diferenciales de primer orden en el campo complejo Universidad de Valladolid. ,(2000)
Tomás Aranda Guillén, Anillos de series generalizadas y ecuaciones diferenciales ordinarias Universidad de Valladolid. ,(2002)
Bernd Sturmfels, Mutsumi Saito, Nobuki Takayama, Gröbner Deformations of Hypergeometric Differential Equations ,(1999)
Fuensanta Aroca, Puiseux parametric equations of analytic sets Proceedings of the American Mathematical Society. ,vol. 132, pp. 3035- 3045 ,(2004) , 10.1090/S0002-9939-04-07337-X
E. Hubert, N. Le Roux, Computing power series solutions of a nonlinear PDE system Proceedings of the 2003 international symposium on Symbolic and algebraic computation - ISSAC '03. pp. 148- 155 ,(2003) , 10.1145/860854.860891
D. Yu. GrigorЬev, M. F. Singer, Solving ordinary differential equations in terms of series with real exponents Transactions of the American Mathematical Society. ,vol. 327, pp. 329- 351 ,(1991) , 10.1090/S0002-9947-1991-1012519-2
José Cano, An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms Annales de l'Institut Fourier. ,vol. 43, pp. 125- 142 ,(1993) , 10.5802/AIF.1324
J. Della Dora, F. Richard-Jung, About the Newton algorithm for non-linear ordinary differential equations international symposium on symbolic and algebraic computation. pp. 298- 304 ,(1997) , 10.1145/258726.258817