A Parallel Memetic Algorithm for Solving Optimization Problems

作者: Konstantinos Margaritis , Jason Digalakis

DOI:

关键词:

摘要: In this paper we examine 10 different functions in order (a) to test specific parameter of a parallel execution memetic algorithms and (b) evaluate the general computational behavior MAs. The available theoretical analysis on does not offer tool which could help generalized adjustment control parameters, leaving choice proper operators, parameters mechanisms depend problem’s demands, experience preferences researcher. structure full as follows: section 2 presents relevant papers other researchers 3 describes used paper. 4 set out methodology then present experimental results our experiments. Finally, draw some conclusions.

参考文章(12)
Pablo Moscato, Regina Berretta, The number partitioning problem: an open challenge for evolutionary computation? New ideas in optimization. pp. 261- 278 ,(1999)
Diana Holstein, Pablo Moscato, Memetic algorithms using guided local search: a case study New ideas in optimization. pp. 235- 244 ,(1999)
D. Levine, Users guide to the PGAPack parallel genetic algorithm library Other Information: PBD: Jan 1996. ,(1996) , 10.2172/366458
William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface ,(1994)
Takeshi Yamada, Ryohei Nakano, Scheduling by Genetic Local Search with Multi-Step Crossover parallel problem solving from nature. ,vol. 4, pp. 960- 969 ,(1996) , 10.1007/3-540-61723-X_1059
Nicholas J. Radcliffe, Patrick D. Surry, Formal Memetic Algorithms artificial intelligence and the simulation of behaviour. pp. 1- 16 ,(1994) , 10.1007/3-540-58483-8_1
Carlos Cotta, Enrique Alba, José M. Troya, Utilizing dynastically optimal forma recombination in hybrid genetic algorithms Lecture Notes in Computer Science. pp. 305- 314 ,(1998) , 10.1007/BFB0056873