Desulfurization of hexyl sulfide and hexanethiol using supercritical water

作者: Jimoon Kang , Seungjae Sim , Hyunwook Jung , Byungchan Han , Youn-Woo Lee

DOI: 10.1016/J.SUPFLU.2019.104734

关键词:

摘要: Abstract Desulfurization of hexyl sulfide and hexanethiol using supercritical water (SCW) was investigated by combining experimental computational methods to study the desulfurization alkyl sulfides thiols in SCW. conducted for 0 ∼ 30 min at 400 °C thermal decomposition SCW (24.7 25.6 MPa), reaction pathways were built automated Reaction Mechanism Generator (RMG) Gaussian 09. In decomposition, C6-hydrocarbons (hexane, hexene) are main products, but SCW, C5-hydrocarbon (pentane) addition products with higher alkane alkene ratio. For pathways, participates as catalysts reactants donating hydrogens inhibited production cyclic while hydrogen deficient producing aromatic sulfur compounds such thiophenes alkyl-thiacycloalkanes. This is expected clarify reactions

参考文章(64)
A. A. Vostrikov, D. Yu. Dubov, S. A. Psarov, Naphthalene oxidation in supercritical water Russian Chemical Bulletin. ,vol. 50, pp. 1481- 1484 ,(2001) , 10.1023/A:1012713913495
Ning Li, Bo Yan, Xian-Ming Xiao, Kinetic and reaction pathway of upgrading asphaltene in supercritical water Chemical Engineering Science. ,vol. 134, pp. 230- 237 ,(2015) , 10.1016/J.CES.2015.05.017
Connie W. Gao, Aäron G. Vandeputte, Nathan W. Yee, William H. Green, Robin E. Bonomi, Gregory R. Magoon, Hsi-Wu Wong, Oluwayemisi O. Oluwole, David K. Lewis, Nick M. Vandewiele, Kevin M. Van Geem, JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation Combustion and Flame. ,vol. 162, pp. 3115- 3129 ,(2015) , 10.1016/J.COMBUSTFLAME.2015.02.010
H Takahashi, S Hisaoka, T Nitta, Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+nH2O→CH3CHO+H2+nH2O(n=0,1,2) Chemical Physics Letters. ,vol. 363, pp. 80- 86 ,(2002) , 10.1016/S0009-2614(02)01142-9
Joshua W. Allen, Adam M. Scheer, Connie W. Gao, Shamel S. Merchant, Subith S. Vasu, Oliver Welz, John D. Savee, David L. Osborn, Changyoul Lee, Stijn Vranckx, Zhandong Wang, Fei Qi, Ravi X. Fernandes, William H. Green, Masood Z. Hadi, Craig A. Taatjes, A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi Combustion and Flame. ,vol. 161, pp. 711- 724 ,(2014) , 10.1016/J.COMBUSTFLAME.2013.10.019
Michael R Harper, Kevin M Van Geem, Steven P Pyl, Guy B Marin, William H Green, None, Comprehensive reaction mechanism for n-butanol pyrolysis and combustion Combustion and Flame. ,vol. 158, pp. 16- 41 ,(2011) , 10.1016/J.COMBUSTFLAME.2010.06.002
Ann Muggeridge, Andrew Cockin, Kevin Webb, Harry Frampton, Ian Collins, Tim Moulds, Peter Salino, Recovery rates, enhanced oil recovery and technological limits Philosophical Transactions of the Royal Society A. ,vol. 372, pp. 20120320- 20120320 ,(2014) , 10.1098/RSTA.2012.0320
Aprameya Ambalae, Nader Mahinpey, Norman Freitag, Thermogravimetric Studies on Pyrolysis and Combustion Behavior of a Heavy Oil and Its Asphaltenes Energy & Fuels. ,vol. 20, pp. 560- 565 ,(2006) , 10.1021/EF0502812
Ying Liu, Fan Bai, Chun-Chun Zhu, Pei-Qing Yuan, Zhen-Min Cheng, Wei-Kang Yuan, Upgrading of residual oil in sub- and supercritical water: An experimental study Fuel Processing Technology. ,vol. 106, pp. 281- 288 ,(2013) , 10.1016/J.FUPROC.2012.07.032
Luc Fusetti, Françoise Behar, Roda Bounaceur, Paul-Marie Marquaire, Kliti Grice, Sylvie Derenne, New insights into secondary gas generation from the thermal cracking of oil: Methylated monoaromatics. A kinetic approach using 1,2,4-trimethylbenzene. Part III: An isotopic fractionation model Organic Geochemistry. ,vol. 41, pp. 431- 436 ,(2010) , 10.1016/J.ORGGEOCHEM.2009.10.013