Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review)

作者: JIE ZHENG

DOI: 10.3892/OL.2012.928

关键词:

摘要: Metabolic activities in normal cells rely primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP for energy. Unlike cells, glycolysis is enhanced and OXPHOS capacity reduced various cancer cells. It has long been believed that the glycolytic phenotype due a permanent impairment of OXPHOS, as proposed by Otto Warburg. This view challenged recent investigations which find function most cancers intact. Aerobic many combined result factors such oncogenes, tumor suppressors, hypoxic microenvironment, mtDNA mutations, genetic background others. Understanding features complexity energy metabolism will help develop new approaches early diagnosis effectively target therapy cancer.

参考文章(78)
Vaupel P, Metabolic microenvironment of tumor cells: a key factor in malignant progression. Experimental Oncology. ,vol. 32, pp. 125- ,(2010)
B M Wice, L J Reitzer, D Kennell, Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. Journal of Biological Chemistry. ,vol. 254, pp. 2669- 2676 ,(1979) , 10.1016/S0021-9258(17)30124-2
George A. Brooks, Cell-cell and intracellular lactate shuttles The Journal of Physiology. ,vol. 587, pp. 5591- 5600 ,(2009) , 10.1113/JPHYSIOL.2009.178350
Michael GUPPY, Peter LEEDMAN, XinLin ZU, Victoria RUSSELL, Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochemical Journal. ,vol. 364, pp. 309- 315 ,(2002) , 10.1042/BJ3640309
Jessica L. Yecies, Brendan D. Manning, mTOR links oncogenic signaling to tumor cell metabolism Journal of Molecular Medicine. ,vol. 89, pp. 221- 228 ,(2011) , 10.1007/S00109-011-0726-6
Monica Buzzai, Daniel E Bauer, Russell G Jones, Ralph J DeBerardinis, Georgia Hatzivassiliou, Rebecca L Elstrom, Craig B Thompson, The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β -oxidation Oncogene. ,vol. 24, pp. 4165- 4173 ,(2005) , 10.1038/SJ.ONC.1208622
Kjerstin M. Owens, Mariola Kulawiec, Mohamad Mokhtar Desouki, Ayyasamy Vanniarajan, Keshav K. Singh, Impaired OXPHOS Complex III in Breast Cancer PLoS ONE. ,vol. 6, pp. e23846- ,(2011) , 10.1371/JOURNAL.PONE.0023846
Ying-Hui Ko, Zhao Lin, Neal Flomenberg, Richard G. Pestell, Anthony Howell, Federica Sotgia, Michael P. Lisanti, Ubaldo E. Martinez-Outschoorn, Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: Implications for preventing chemotherapy resistance Cancer Biology & Therapy. ,vol. 12, pp. 1085- 1097 ,(2011) , 10.4161/CBT.12.12.18671
Q. Sun, X. Chen, J. Ma, H. Peng, F. Wang, X. Zha, Y. Wang, Y. Jing, H. Yang, R. Chen, L. Chang, Y. Zhang, J. Goto, H. Onda, T. Chen, M.-R. Wang, Y. Lu, H. You, D. Kwiatkowski, H. Zhang, Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth Proceedings of the National Academy of Sciences of the United States of America. ,vol. 108, pp. 4129- 4134 ,(2011) , 10.1073/PNAS.1014769108
Wenzhe Ma, Ho Joong Sung, Joon Y. Park, Satoaki Matoba, Paul M. Hwang, A pivotal role for p53: balancing aerobic respiration and glycolysis Journal of Bioenergetics and Biomembranes. ,vol. 39, pp. 243- 246 ,(2007) , 10.1007/S10863-007-9083-0