Gradient percolation in three dimensions and relation to diffusion fronts.

作者: M. Rosso , J. F. Gouyet , B. Sapoval

DOI: 10.1103/PHYSREVLETT.57.3195

关键词:

摘要: Percolation in a concentration gradient has been carried out for the cubic lattice. In contradistinction with two-dimensional case, frontier of infinite cluster extends over macroscopic range concentrations. that almost all occupied sites belong to which dimension three. This defines an ideally porous material. The ratio local concentrations and its external perimeter is equal overall empty sites.

参考文章(6)
M. Rosso, J. F. Gouyet, B. Sapoval, Determination of percolation probability from the use of a concentration gradient. Physical Review B. ,vol. 32, pp. 6053- 6054 ,(1985) , 10.1103/PHYSREVB.32.6053
B SAPOVAL, M ROSSO, J GOUYET, J COLONNA, Dynamics of the creation of fractal objects by diffusion and 1/f noise Solid State Ionics. pp. 21- 30 ,(1986) , 10.1016/0167-2738(86)90086-X
R F Voss, The fractal dimension of percolation cluster hulls Journal of Physics A. ,vol. 17, ,(1984) , 10.1088/0305-4470/17/7/001
Dietrich Stauffer, Amnon Aharony, Introduction to Percolation Theory Taylor & Francis. ,(1985) , 10.4324/9780203211595
R M Ziff, P T Cummings, G Stells, Generation of percolation cluster perimeters by a random walk Journal of Physics A. ,vol. 17, pp. 3009- 3017 ,(1984) , 10.1088/0305-4470/17/15/018