Prognostic Implication of a Metabolism-Associated Gene Signature in Lung Adenocarcinoma.

作者: Lulu He , Jiaxian Chen , Feng Xu , Jun Li , Jun Li

DOI: 10.1016/J.OMTO.2020.09.011

关键词:

摘要: Lung cancer is the most common worldwide, leading to high mortality each year. Metabolic pathways play a vital role in initiation and progression of lung cancer. We aimed establish prognostic prediction model for adenocarcinoma (LUAD) patients based on metabolism-associated gene (MTG) signature. Differentially expressed (DE)-MTGs were screened from The Cancer Genome Atlas (TCGA) LUAD cohorts. Univariate Cox regression analysis was performed these DE-MTGs identify genes significantly correlated with prognosis. Least absolute shrinkage selection operator (LASSO) resulting an optimal risk model. Survival used assess ability value signature further validated independent Gene Expression Omnibus (GEO) datasets. A 13 metabolic identified as factor. Kaplan-Meier survival demonstrated good performance both TCGA training GEO validation Finally, nomogram incorporating clinical parameters constructed help individualize outcome predictions. calibration curves showed excellent agreement between actual predicted survival.

参考文章(33)
Shiyan Yan, Yuqin Wang, Meimei Chen, Guangming Li, Jiangao Fan, Deregulated SLC2A1 Promotes Tumor Cell Proliferation and Metastasis in Gastric Cancer. International Journal of Molecular Sciences. ,vol. 16, pp. 16144- 16157 ,(2015) , 10.3390/IJMS160716144
A. J. Levine, A. M. Puzio-Kuter, The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes Science. ,vol. 330, pp. 1340- 1344 ,(2010) , 10.1126/SCIENCE.1193494
Guangchuang Yu, Li-Gen Wang, Yanyan Han, Qing-Yu He, clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters Omics A Journal of Integrative Biology. ,vol. 16, pp. 284- 287 ,(2012) , 10.1089/OMI.2011.0118
Alexia Iasonos, Deborah Schrag, Ganesh V. Raj, Katherine S. Panageas, How To Build and Interpret a Nomogram for Cancer Prognosis Journal of Clinical Oncology. ,vol. 26, pp. 1364- 1370 ,(2008) , 10.1200/JCO.2007.12.9791
M. G. Vander Heiden, L. C. Cantley, C. B. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation Science. ,vol. 324, pp. 1029- 1033 ,(2009) , 10.1126/SCIENCE.1160809
S Asburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel‐Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics. ,vol. 25, pp. 25- 29 ,(2000) , 10.1038/75556
Suresh S. Ramalingam, Taofeek K. Owonikoko, Fadlo R. Khuri, Lung cancer: New biological insights and recent therapeutic advances. CA: A Cancer Journal for Clinicians. ,vol. 61, pp. 91- 112 ,(2011) , 10.3322/CAAC.20102
Mark D Robinson, Davis J McCarthy, Gordon K Smyth, None, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. ,vol. 26, pp. 139- 140 ,(2010) , 10.1093/BIOINFORMATICS/BTP616
A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 15545- 15550 ,(2005) , 10.1073/PNAS.0506580102