Large-N theory of strongly commensurate dirty bosons: absence of a transition in two dimensions

作者: M J Case , I F Herbut

DOI: 10.1088/0305-4470/34/38/302

关键词:

摘要: The spherical limit of strongly commensurate dirty bosons is studied perturbatively at weak disorder and numerically strong in two dimensions (2D). We argue that not perfectly screened by interactions consequently the ground state effective Anderson localization problem always remains localized. As a result there only gapped Mott insulator phase theory. Comparisons with other studies parallel disordered fermions 2D are discussed. conjecture while for physical cases N = 2 (XY) 1 (Ising) theory should have ordered phase, it may 3 (Heisenberg).

参考文章(24)
Subir Sachdev, Quantum Phase Transitions ,(2001)
Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, Daniel S. Fisher, Boson localization and the superfluid-insulator transition. Physical Review B. ,vol. 40, pp. 546- 570 ,(1989) , 10.1103/PHYSREVB.40.546
Yuhai Tu, Peter B. Weichman, Quantum spherical models for dirty phase transitions. Physical Review Letters. ,vol. 73, pp. 6- 9 ,(1994) , 10.1103/PHYSREVLETT.73.6
Daniel Boyanovsky, John L. Cardy, Critical behavior ofm-component magnets with correlated impurities Physical Review B. ,vol. 26, pp. 154- 170 ,(1982) , 10.1103/PHYSREVB.26.154
I D Lawrie, V V Prudnikov, Static and dynamic properties of systems with extended defects: two-loop approximation Journal of Physics C: Solid State Physics. ,vol. 17, pp. 1655- 1668 ,(1984) , 10.1088/0022-3719/17/10/007
S.N. Dorogovtsev, Critical exponents of magnets with lengthy defects Physics Letters A. ,vol. 76, pp. 169- 170 ,(1980) , 10.1016/0375-9601(80)90604-0
Mats Wallin, Erik S. So/rensen, S. M. Girvin, A. P. Young, Superconductor-insulator transition in two-dimensional dirty boson systems. Physical Review B. ,vol. 49, pp. 12115- 12139 ,(1994) , 10.1103/PHYSREVB.49.12115
J. A. Hertz, L. Fleishman, P. W. Anderson, Marginal Fluctuations in a Bose Glass Physical Review Letters. ,vol. 43, pp. 942- 946 ,(1979) , 10.1103/PHYSREVLETT.43.942