An EM Algorithm for Estimating Log Linear Models with Additional Marginal Constraints

作者: Woollcott Smith

DOI: 10.1007/978-1-4612-2856-1_93

关键词:

摘要: In this paper we consider a class of parametric models for two-way multinomial tables, where the cell probabilities, pij, are function K dimensional parameter vector θ, pij =pij(θ), and ML estimator, has property that $$\hat{p}_i.=n_i./n$$ and $$\hat{p}._j=n._j/n$$ (1.1) ni., n.j, pi pj denote usual row column sums data probabilities \(\hat{p}._ij=p_{ij}(\hat{\theta} )\). That is, MLE marginals is precisely observed marginal frequencies. This includes tables with positive local odds ratios, Smith (1989) Dykstra Lemke (1988), wide log linear models, Bishop, Fienberg Holland (1975), as well unconstrained \(\hat{p}_{ij}=n_{ij}/n\)

参考文章(10)
Richard H. Smith, Maximum likelihood mean and covariance matrix estimation constrained to general positive semi-definiteness Communications in Statistics-theory and Methods. ,vol. 14, pp. 2163- 2179 ,(1985) , 10.1080/03610928508829036
Stephen E. Fienberg, An Iterative Procedure for Estimation in Contingency Tables Annals of Mathematical Statistics. ,vol. 41, pp. 907- 917 ,(1970) , 10.1214/AOMS/1177696968
Woollcott Smith, A maximum likelihood estimator for totally positive probability tables: a method for smoothing two-way tables Journal of Statistical Computation and Simulation. ,vol. 33, pp. 69- 73 ,(1989) , 10.1080/00949658908811187
Richard A. Redner, Homer F. Walker, Mixture Densities, Maximum Likelihood and the EM Algorithm SIAM Review. ,vol. 26, pp. 195- 239 ,(1984) , 10.1137/1026034
Frederick F. Stephan, An Iterative Method of Adjusting Sample Frequency Tables When Expected Marginal Totals are Known Annals of Mathematical Statistics. ,vol. 13, pp. 166- 178 ,(1942) , 10.1214/AOMS/1177731604
Richard L Dykstra, Jon H. Lemke, Duality ofIProjections and Maximum Likelihood Estimation for Log-Linear Models Under Cone Constraints Journal of the American Statistical Association. ,vol. 83, pp. 546- 554 ,(1988) , 10.1080/01621459.1988.10478631
W. Edwards Deming, Frederick F. Stephan, On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known Annals of Mathematical Statistics. ,vol. 11, pp. 427- 444 ,(1940) , 10.1214/AOMS/1177731829
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
C. T. IRELAND, S. KULLBACK, Contingency tables with given marginals Biometrika. ,vol. 55, pp. 179- 188 ,(1968) , 10.1093/BIOMET/55.1.179
Yvonne M Bishop, Stephen E Fienberg, Paul W Holland, None, Discrete Multivariate Analysis: Theory and Practice ,(1975)