Augmented Lagrangian Optimization under Fixed-Point Arithmetic

作者: Michael M. Zavlanos , Yan Zhang

DOI:

关键词:

摘要: In this paper, we propose an inexact Augmented Lagrangian Method (ALM) for the optimization of convex and nonsmooth objective functions subject to linear equality constraints box where errors are due fixed-point data. To prevent data overflow also introduce a projection operation in multiplier update. We analyze theoretically proposed algorithm provide convergence rate results bounds on accuracy optimal solution. Since iterative methods often needed solve primal subproblem ALM, early stopping criterion that is simple implement embedded platforms, can be used problems not strongly convex, guarantees precision best our knowledge, first ALM handle non-smooth problems, overflow, efficiently systematically utilize solvers Numerical simulation studies utility maximization problem presented illustrate method.

参考文章(26)
Angelia Nedić, Asuman Ozdaglar, Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods Siam Journal on Optimization. ,vol. 19, pp. 1757- 1780 ,(2008) , 10.1137/070708111
Olivier Devolder, François Glineur, Yurii Nesterov, Double Smoothing Technique for Large-Scale Linearly Constrained Convex Optimization Siam Journal on Optimization. ,vol. 22, pp. 702- 727 ,(2012) , 10.1137/110826102
Darinka Dentcheva, Michael M. Zavlanos, Nikolaos Chatzipanagiotis, An augmented Lagrangian method for distributed optimization Mathematical Programming. ,vol. 152, pp. 405- 434 ,(2015) , 10.1007/S10107-014-0808-7
Panagiotis Patrinos, Alberto Bemporad, An Accelerated Dual Gradient-Projection Algorithm for Embedded Linear Model Predictive Control conference on decision and control. ,vol. 59, pp. 18- 33 ,(2012) , 10.1109/TAC.2013.2275667
E.R. Hansen, G.W. Walster, Bounds for lagrange multipliers and optimal points Computers & Mathematics With Applications. ,vol. 25, pp. 59- 69 ,(1993) , 10.1016/0898-1221(93)90282-Z
Jonathan Eckstein, Paulo J. S. Silva, A practical relative error criterion for augmented Lagrangians Mathematical Programming. ,vol. 141, pp. 319- 348 ,(2013) , 10.1007/S10107-012-0528-9
Valentin Nedelcu, Ion Necoara, Quoc Tran-Dinh, Computational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC Siam Journal on Control and Optimization. ,vol. 52, pp. 3109- 3134 ,(2014) , 10.1137/120897547
Panagiotis Patrinos, Alberto Guiggiani, Alberto Bemporad, A dual gradient-projection algorithm for model predictive control in fixed-point arithmetic Automatica. ,vol. 55, pp. 226- 235 ,(2015) , 10.1016/J.AUTOMATICA.2015.03.002
R. Tyrrell Rockafellar, Monotone Operators and the Proximal Point Algorithm SIAM Journal on Control and Optimization. ,vol. 14, pp. 877- 898 ,(1976) , 10.1137/0314056
Guanghui Lan, Renato D. C. Monteiro, Iteration-complexity of first-order augmented Lagrangian methods for convex programming Mathematical Programming. ,vol. 155, pp. 511- 547 ,(2016) , 10.1007/S10107-015-0861-X