Multivariate volume visualization through dynamic projections

作者: Shusen Liu , Bei Wang , Jayaraman J. Thiagarajan , Peer-Timo Bremer , Valerio Pascucci

DOI: 10.1109/LDAV.2014.7013202

关键词:

摘要: We propose a multivariate volume visualization framework that tightly couples dynamic projections with high-dimensional transfer function design for interactive visualization. assume the complex, data in attribute space can be well-represented through collection of low-dimensional linear subspaces, and embed points variety 2D views created as onto these subspaces. Through projections, we present animated transitions between different to help user navigate explore effective design. Our not only provides more intuitive understanding but also allows under multiple views, which is flexible than being restricted single static view data. For large volumetric datasets, maintain interactivity during via intelligent sampling scalable clustering. Using examples combustion climate simulations, demonstrate how our used visualize interesting structures space.

参考文章(32)
Armin Kanitsar, M. Eduard Gröller, Martin Haidacher, Stefan Bruckner, Information-based transfer functions for multimodal visualization visual computing for biomedicine. pp. 101- 108 ,(2008) , 10.2312/VCBM/VCBM08/101-108
Matthew O. Ward, Allen R. Martin, High Dimensional Brushing for Interactive Exploration of Multivariate Data ieee visualization. pp. 271- ,(1995) , 10.5555/832271.833844
Han Suk Kim, Jürgen P. Schulze, Angela C. Cone, Gina E. Sosinsky, Maryann E. Martone, Dimensionality reduction on multi-dimensional transfer functions for multi-channel volume data sets visualization and data analysis. ,vol. 9, pp. 167- 180 ,(2010) , 10.1057/IVS.2010.6
Daniel Whalen, Michael L. Norman, Ionization Front Instabilities in Primordial H II Regions The Astrophysical Journal. ,vol. 673, pp. 664- 675 ,(2008) , 10.1086/524400
Daniel Asimov, The Grand Tour: A Tool for Viewing Multidimensional Data SIAM Journal on Scientific and Statistical Computing. ,vol. 6, pp. 128- 143 ,(1985) , 10.1137/0906011
Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, Yi Ma, Robust Recovery of Subspace Structures by Low-Rank Representation IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 35, pp. 171- 184 ,(2013) , 10.1109/TPAMI.2012.88
Ehsan Elhamifar, Rene Vidal, Sparse subspace clustering computer vision and pattern recognition. pp. 2790- 2797 ,(2009) , 10.1109/CVPR.2009.5206547
Shixia Liu, Weiwei Cui, Yingcai Wu, Mengchen Liu, None, A survey on information visualization: recent advances and challenges The Visual Computer. ,vol. 30, pp. 1373- 1393 ,(2014) , 10.1007/S00371-013-0892-3
Fabian Maas, Ines Farber, Enrico Bertini, Tobias Schreck, Thomas Seidl, Daniel Keim, Andrada Tatu, Subspace search and visualization to make sense of alternative clusterings in high-dimensional data visual analytics science and technology. pp. 63- 72 ,(2012) , 10.1109/VAST.2012.6400488