Information-based transfer functions for multimodal visualization

作者: Armin Kanitsar , M. Eduard Gröller , Martin Haidacher , Stefan Bruckner

DOI: 10.2312/VCBM/VCBM08/101-108

关键词: Value (computer science)Information theorySpace (mathematics)Artificial intelligenceVisualizationData miningTransfer functionContrast (statistics)Machine learningComputer scienceUsabilityModality (human–computer interaction)

摘要: Transfer functions are an essential part of volume visualization. In multimodal visualization at least two values exist every sample point. Additionally, other parameters, such as gradient magnitude, often retrieved for each To find a good transfer function this high number parameters is challenging because the complexity task. paper we present general information-based approach design in which independent used modality types. Based on information theory, complex multi-dimensional space fused to allow utilization well-known 2D with single value and magnitude parameters. quantity introduced enables better separation regions complementary information. The benefit new method contrast techniques easy understand provides different tissues. usability shown examples modalities.

参考文章(19)
Kwan-Liu May, Hiroshi Akibay, A tri-space visualization interface for analyzing time-varying multivariate volume data ieee vgtc conference on visualization. pp. 115- 122 ,(2007) , 10.2312/VISSYM/EUROVIS07/115-122
Paul Viola, William M. Wells III, Alignment by Maximization of Mutual Information International Journal of Computer Vision. ,vol. 24, pp. 137- 154 ,(1997) , 10.1023/A:1007958904918
A. C. Evans, S. Marrett, J. Torrescorzo, S. Ku, L. Collins, MRI-PET Correlation in Three Dimensions Using a Volume-of-Interest (VOI) Atlas: Journal of Cerebral Blood Flow and Metabolism. ,vol. 11, ,(1991) , 10.1038/JCBFM.1991.40
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X
D N Levin, X P Hu, K K Tan, S Galhotra, C A Pelizzari, G T Chen, R N Beck, C T Chen, M D Cooper, J F Mullan, The brain: integrated three-dimensional display of MR and PET images. Radiology. ,vol. 172, pp. 783- 789 ,(1989) , 10.1148/RADIOLOGY.172.3.2788893
Rik Stokking, Karel J. Zuiderveld, Hilleke E. Hulshoff Pol, Max A. Viergever, Single photon emission photography/magnetic resonance imaging (SPECT/MRI) visualization for frontal-lobe-damaged regions Visualization in Biomedical Computing 1994. ,vol. 2359, pp. 282- 290 ,(1994) , 10.1117/12.185188
Gordon Kindlmann, Chandrajit Bajaj, Bill Lorensen, Will Schroeder, Hanspeter Pfister, The transfer function bake-off (panel session) ieee visualization. pp. 523- 526 ,(2000) , 10.5555/375213.375385
Lothar R. Schad, Robert Boesecke, Wolfgang Schlegel, Günther H. Hartmann, Volker Sturm, Ludwig G. Strauss, Walter J. Lorenz, Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumors. Journal of Computer Assisted Tomography. ,vol. 11, pp. 948- 954 ,(1987) , 10.1097/00004728-198711000-00005
Wenli Cai, Georgios Sakas, Data intermixing and multi-volume rendering Computer Graphics Forum. ,vol. 18, pp. 359- 368 ,(1999) , 10.1111/1467-8659.00356
Joe Kniss, Jürgen P Schulze, Uwe Wössner, Peter Winkler, Ulrich Lang, Charles Hansen, None, Medical applications of multi-field volume rendering and VR techniques eurographics. pp. 249- 254 ,(2004) , 10.5555/2384225.2384263