Receiver array design for sonothrombolysis treatment monitoring in deep vein thrombosis.

作者: Christopher N Acconcia , Ryan M Jones , Kullervo Hynynen

DOI: 10.1088/1361-6560/AAEE91

关键词:

摘要: High intensity focused ultrasound (HIFU) can disintegrate blood clots through the generation and stimulation of bubble clouds within thrombi. This work examined design a device to image for monitoring cavitation-based HIFU treatments deep vein thrombosis (DVT). Acoustic propagation simulations were carried out on multi-layered models human thigh using two patient data sets from Visible Human Project. The considerations included number receivers (32, 64, 128, 256, 512), their spatial positioning, effective angular array aperture (100° 180° about geometric focus). Imaging performance was evaluated source frequencies 250, 750, 1500 kHz. Receiver sizes fixed relative wavelength (pistons, diameter  =  λ/2) noise added at levels that scaled with receiver area. With 100° long axis size the  -3 dB main lobe ~1.2λ-i.e. order vessel diameter 250 kHz (~7 mm). Increasing span focus reduced by factor ~2. smaller achieved imaging higher came cost increased sensitivity phase aberrations induced during acoustic intervening soft tissue layers. signals, images could be reconstructed peak sidelobe ratios  <  -3 single-cycle integration times 250 750 kHz (NRx  ⩾  128). At 1500 kHz, longer and/or element counts required achieve similar ratios. Our results suggest modest receivers(i.e. NRx  =  128) arranged semi-cylindrical shell may sufficient enable passive (i.e. volumetric rates up 0.75 MHz) DVT.

参考文章(63)
D. J. Phillips, S. W. Smith, O. T. von Ramm, F. L. Thurstone, Sampled Aperture Techniques Applied to B-Mode Echoencephalography Springer, Boston, MA. pp. 103- 120 ,(1975) , 10.1007/978-1-4615-8216-8_6
Ryan M. Jones, Meaghan A. O'Reilly, Kullervo Hynynen, Experimental demonstration of passive acoustic imaging in the human skull cavity using CT‐based aberration corrections Medical Physics. ,vol. 42, pp. 4385- 4400 ,(2015) , 10.1118/1.4922677
D.W. Barritt, S.C. Jordan, ANTICOAGULANT DRUGS IN THE TREATMENT OF PULMONARY EMBOLISM The Lancet. ,vol. 275, pp. 1309- 1312 ,(1960) , 10.1016/S0140-6736(60)92299-6
Kevin J. Haworth, Vasant A. Salgaonkar, Nicholas M. Corregan, Christy K. Holland, T. Douglas Mast, Using Passive Cavitation Images to Classify High-Intensity Focused Ultrasound Lesions Ultrasound in Medicine & Biology. ,vol. 41, pp. 2420- 2434 ,(2015) , 10.1016/J.ULTRASMEDBIO.2015.04.025
Christian Coviello, Richard Kozick, James Choi, Miklós Gyöngy, Carl Jensen, Penny Probert Smith, Constantin-C. Coussios, Passive acoustic mapping utilizing optimal beamforming in ultrasound therapy monitoring. Journal of the Acoustical Society of America. ,vol. 137, pp. 2573- 2585 ,(2015) , 10.1121/1.4916694
J. B. Fowlkes, L. A. Crum, Cavitation threshold measurements for microsecond length pulses of ultrasound. Journal of the Acoustical Society of America. ,vol. 83, pp. 2190- 2201 ,(1988) , 10.1121/1.396347
Adam D. Maxwell, Charles A. Cain, Timothy L. Hall, J. Brian Fowlkes, Zhen Xu, Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials Ultrasound in Medicine and Biology. ,vol. 39, pp. 449- 465 ,(2013) , 10.1016/J.ULTRASMEDBIO.2012.09.004
Xi Zhang, Gabe E. Owens, Hitinder S. Gurm, Yu Ding, Charles A. Cain, Zhen Xu, Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy) IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. ,vol. 62, pp. 1342- 1355 ,(2015) , 10.1109/TUFFC.2015.007016
Ryan M Jones, Meaghan A O’Reilly, Kullervo Hynynen, Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study Physics in Medicine and Biology. ,vol. 58, pp. 4981- 5005 ,(2013) , 10.1088/0031-9155/58/14/4981
Adam D. Maxwell, Tzu-Yin Wang, Charles A. Cain, J. Brian Fowlkes, Oleg A. Sapozhnikov, Michael R. Bailey, Zhen Xu, Cavitation clouds created by shock scattering from bubbles during histotripsy The Journal of the Acoustical Society of America. ,vol. 130, pp. 1888- 1898 ,(2011) , 10.1121/1.3625239