A recommender system based on implicit feedback for selective dissemination of ebooks

作者: Edward Rolando Núñez-Valdez , David Quintana , Ruben González Crespo , Pedro Isasi , Enrique Herrera-Viedma

DOI: 10.1016/J.INS.2018.07.068

关键词:

摘要: Abstract In this study, we describe a recommendation system for electronic books. The approach is based on implicit feedback derived from user’s interaction with content. User’s behavior tracked through several indicators that are subsequently used to feed the engine. This component then provides an explicit rating material interacted with. role of engine could be modeled as regression task where content rated according mentioned indicators. context, benchmark twelve popular machine learning algorithms perform final function and evaluate quality output provided by system.

参考文章(50)
Gawesh Jawaheer, Martin Szomszor, Patty Kostkova, Comparison of implicit and explicit feedback from an online music recommendation service conference on recommender systems. pp. 47- 51 ,(2010) , 10.1145/1869446.1869453
Ido Guy, David Carmel, Social recommender systems the web conference. pp. 283- 284 ,(2011) , 10.1145/1963192.1963312
Katrien Verbert, Nikos Manouselis, Xavier Ochoa, Martin Wolpers, Hendrik Drachsler, Ivana Bosnic, Erik Duval, Context-Aware Recommender Systems for Learning: A Survey and Future Challenges IEEE Transactions on Learning Technologies. ,vol. 5, pp. 318- 335 ,(2012) , 10.1109/TLT.2012.11
J.R. Quinlan, Simplifying decision trees International Journal of Human-computer Studies \/ International Journal of Man-machine Studies. ,vol. 51, pp. 221- 234 ,(1987) , 10.1016/S0020-7373(87)80053-6
David W. Aha, Dennis Kibler, Marc K. Albert, Instance-Based Learning Algorithms Machine Learning. ,vol. 6, pp. 37- 66 ,(1991) , 10.1023/A:1022689900470
G. Linden, B. Smith, J. York, Amazon.com recommendations: item-to-item collaborative filtering IEEE Internet Computing. ,vol. 7, pp. 76- 80 ,(2003) , 10.1109/MIC.2003.1167344
Alina Pommeranz, Joost Broekens, Pascal Wiggers, Willem-Paul Brinkman, Catholijn M. Jonker, Designing interfaces for explicit preference elicitation: a user-centered investigation of preference representation and elicitation process User Modeling and User-adapted Interaction. ,vol. 22, pp. 357- 397 ,(2012) , 10.1007/S11257-011-9116-6
C. Porcel, A. Tejeda-Lorente, M.A. Martínez, E. Herrera-Viedma, A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office Information Sciences. ,vol. 184, pp. 1- 19 ,(2012) , 10.1016/J.INS.2011.08.026
John Moody, Christian J. Darken, Fast learning in networks of locally-tuned processing units Neural Computation. ,vol. 1, pp. 281- 294 ,(1989) , 10.1162/NECO.1989.1.2.281
G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions IEEE Transactions on Knowledge and Data Engineering. ,vol. 17, pp. 734- 749 ,(2005) , 10.1109/TKDE.2005.99