Nonpositive Curvature and Pareto Optimal Coordination of Robots

作者: Robert Ghrist , Steven M. Lavalle

DOI: 10.1137/040609860

关键词:

摘要: … The principal optimization result of this paper is that for coordination spaces which possess “cylindrical” obstacles—those defined by pairwise collisions between robots—there is a …

参考文章(30)
J. T. Shwartz, On the Piano Movers' Problem : III Int. J. Rbotics Research. ,vol. 2, pp. 46- 75 ,(1983)
M. D. Ardema, J. M. Skowronski, Dynamic game applied to coordination control of two arm robotic system Springer, Berlin, Heidelberg. pp. 118- 130 ,(1991) , 10.1007/BFB0040233
P. Svestka, M.H. Overmars, Coordinated motion planning for multiple car-like robots using probabilistic roadmaps international conference on robotics and automation. ,vol. 2, pp. 1631- 1636 ,(1995) , 10.1109/ROBOT.1995.525508
Jérôme Barraquand, Jean-Claude Latombe, Robot motion planning: a distributed representation approach The International Journal of Robotics Research. ,vol. 10, pp. 628- 649 ,(1991) , 10.1177/027836499101000604
Kamal Kant, Steven W. Zucker, Toward efficient trajectory planning: the path-velocity decomposition The International Journal of Robotics Research. ,vol. 5, pp. 72- 89 ,(1986) , 10.1177/027836498600500304
B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, J. Snoeyink, Ray shooting in polygons using geodesic triangulations Algorithmica. ,vol. 12, pp. 54- 68 ,(1994) , 10.1007/BF01377183
Jufeng Peng, Srinivas Akella, Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths The International Journal of Robotics Research. ,vol. 24, pp. 295- 310 ,(2005) , 10.1177/0278364905051974
S.J. Buckley, Fast motion planning for multiple moving robots international conference on robotics and automation. pp. 322- 326 ,(1989) , 10.1109/ROBOT.1989.100008