Modeling of Cotton Yields in the Amu Darya River Floodplains of Uzbekistan Integrating Multitemporal Remote Sensing and Minimum Field Data

作者: Zhou Shi , Gerd R Ruecker , Marc Mueller , Christopher Conrad , Nazar Ibragimov

DOI: 10.2134/AGRONJ2006.0260

关键词:

摘要: Increased knowledge about the spatial distribution of cotton (Gossypium hirsutum L.) yield in Khorezm region Uzbekistan supports optimal allocation resources. This research estimated the cotton yields by integrating remote sensing, field data, and modeling. The agro-meteorological model used was based on Monteith’s biomass production model with multitemporal MODIS (Moderate Resolution Imaging Spectroradiometer)- derived parameters from 2002 as primary inputs. photosynthetically active radiation (PAR) environmental stress scalars on crop development were estimated with meteorological information. Using high-spatial-resolution Landsat 7 ETM+ images, cotton area extracted fraction determined within the coarse resolution pixels. the MODISFPARdata improved using an empirical relationship to the higher-resolution NDVI (Normalized Difference Vegetation Index) data. raw ranged 1.09 to 3.76 Mg ha -1 . modeling revealed a trend higher upstream areas locations closer to irrigation channels and lower downstream at sites more distant the channels. validated estimations showed 10% deviation from official governmental statistics. established freely available data minimum field data input is promising technique for economic operational lateseason estimation spatially distributed over large regions on which management adjustments could be made.

参考文章(30)
Wim J.D van Leeuwen, Alfredo R Huete, Trevor W Laing, MODIS Vegetation Index Compositing Approach: A Prototype with AVHRR Data Remote Sensing of Environment. ,vol. 69, pp. 264- 280 ,(1999) , 10.1016/S0034-4257(99)00022-X
Richard G. Allen, Dirk Raes, Martin Smith, Luis S. Pereira, Crop evapotranspiration : guidelines for computing crop water requirements FAO Irrigation and Drainage Paper (FAO). ,(1998)
B.K Wylie, D.J Meyer, L.L Tieszen, S Mannel, Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands Remote Sensing of Environment. ,vol. 79, pp. 266- 278 ,(2002) , 10.1016/S0034-4257(01)00278-4
Paul C Doraiswamy, Jerry L Hatfield, Thomas J Jackson, Bakhyt Akhmedov, J Prueger, Alan Stern, Crop condition and yield simulations using Landsat and MODIS Remote Sensing of Environment. ,vol. 92, pp. 548- 559 ,(2004) , 10.1016/J.RSE.2004.05.017
N.R. Dalezios, C. Domenikiotis, A. Loukas, S.T. Tzortzios, C. Kalaitzidis, Cotton yield estimation based on NOAA/AVHRR produced NDVI Physics and Chemistry of The Earth Part B-hydrology Oceans and Atmosphere. ,vol. 26, pp. 247- 251 ,(2001) , 10.1016/S1464-1909(00)00247-1
Christopher B. Field, James T. Randerson, Carolyn M. Malmström, Global net primary production: Combining ecology and remote sensing Remote Sensing of Environment. ,vol. 51, pp. 74- 88 ,(1995) , 10.1016/0034-4257(94)00066-V
N. A. QUARMBY, M. MILNES, T. L. HINDLE, N. SILLEOS, The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction International Journal of Remote Sensing. ,vol. 14, pp. 199- 210 ,(1993) , 10.1080/01431169308904332
J.W Seaquist, L Olsson, J Ardö, A remote sensing-based primary production model for grassland biomes Ecological Modelling. ,vol. 169, pp. 131- 155 ,(2003) , 10.1016/S0304-3800(03)00267-9
Wim G.M. Bastiaanssen, Samia Ali, A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan Agriculture, Ecosystems & Environment. ,vol. 94, pp. 321- 340 ,(2003) , 10.1016/S0167-8809(02)00034-8
C.O Justice, J.R.G Townshend, E.F Vermote, E Masuoka, R.E Wolfe, N Saleous, D.P Roy, J.T Morisette, An overview of MODIS Land data processing and product status Remote Sensing of Environment. ,vol. 83, pp. 3- 15 ,(2002) , 10.1016/S0034-4257(02)00084-6