End-product inhibition and acidification limit biowaste fermentation efficiency

作者: Maraike Probst , Andreas Walter , Gilbert Dreschke , Flavio Fornasier , Thomas Pümpel

DOI: 10.1016/J.BIORTECH.2015.09.055

关键词:

摘要: Converting waste to resource may mitigate environmental pollution and global limitation. The platform chemical lactic acid can be produced from biowaste its liquid fraction after solid-liquid separation. A fermentation step for production prior the conversion of methane organic fertilizer would increase biowaste's value. Despite huge potential promising results treatment procedure, reasons efficiency loss observed previously need addressed in order pave way an up-scaling process. Therefore, was fermented applying pH control, extraction glucose addition counteract such as acidification, end-product inhibition carbon limitation, respectively. competitive compared other renewable substrates reached a maximum productivity >5 g Clactic acidg(-1)Ch(-1) concentration exceeding 30 L(-1). combination acidification identified major obstacle. Lactobacillus crispatus closest relatives were key producers within process using Miseq Illumina sequencing.

参考文章(32)
in chief George M. Garrity, Bergey's Manual of Systematic Bacteriology ,(1986)
Michel. DuBois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, Fred. Smith, Colorimetric Method for Determination of Sugars and Related Substances Analytical Chemistry. ,vol. 28, pp. 350- 356 ,(1956) , 10.1021/AC60111A017
Michiel Dusselier, Pieter Van Wouwe, Annelies Dewaele, Ekaterina Makshina, Bert F. Sels, Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis Energy and Environmental Science. ,vol. 6, pp. 1415- 1442 ,(2013) , 10.1039/C3EE00069A
Jae-Hwan Choi, Sung-Hye Kim, Seung-Hyeon Moon, Recovery of lactic acid from sodium lactate by ion substitution using ion-exchange membrane Separation and Purification Technology. ,vol. 28, pp. 69- 79 ,(2002) , 10.1016/S1383-5866(02)00014-X
K. Madhavan Nampoothiri, Nimisha Rajendran Nair, Rojan Pappy John, An overview of the recent developments in polylactide (PLA) research. Bioresource Technology. ,vol. 101, pp. 8493- 8501 ,(2010) , 10.1016/J.BIORTECH.2010.05.092
Nicola Secchi, Daniela Giunta, Luca Pretti, Mónica Ruiz García, Tonina Roggio, Ilaria Mannazzu, Pasquale Catzeddu, Bioconversion of ovine scotta into lactic acid with pure and mixed cultures of lactic acid bacteria. Journal of Industrial Microbiology & Biotechnology. ,vol. 39, pp. 175- 181 ,(2012) , 10.1007/S10295-011-1013-9
Wei Guo, Wendi Jia, Yin Li, Shulin Chen, Performances of Lactobacillus brevis for Producing Lactic Acid from Hydrolysate of Lignocellulosics Applied Biochemistry and Biotechnology. ,vol. 161, pp. 124- 136 ,(2010) , 10.1007/S12010-009-8857-8
Arvid Garde, Gunnar Jonsson, Anette S. Schmidt, Birgitte K. Ahring, Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresource Technology. ,vol. 81, pp. 217- 223 ,(2002) , 10.1016/S0960-8524(01)00135-3
Yukihiro Tashiro, Hiroko Matsumoto, Hirokuni Miyamoto, Yuki Okugawa, Poudel Pramod, Hisashi Miyamoto, Kenji Sakai, A novel production process for optically pure l -lactic acid from kitchen refuse using a bacterial consortium at high temperatures Bioresource Technology. ,vol. 146, pp. 672- 681 ,(2013) , 10.1016/J.BIORTECH.2013.07.102
Milind A. Patel, Mark S. Ou, Roberta Harbrucker, Henry C. Aldrich, Marian L. Buszko, Lonnie O. Ingram, K. T. Shanmugam, Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environmental Microbiology. ,vol. 72, pp. 3228- 3235 ,(2006) , 10.1128/AEM.72.5.3228-3235.2006