Mass Transport: Circulatory System with Emphasis on Nonendothermic Species.

作者: Dane A. Crossley , Warren W. Burggren , Carl L. Reiber , Jordi Altimiras , Kenneth J. Rodnick

DOI: 10.1002/CPHY.C150010

关键词:

摘要: Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has long history providing new insights advancing our understanding mass across wide array systems. Here we focus on function nonmodel species. Invertebrates possess diverse convection systems; that at most complex generate pressures perform level comparable to vertebrates. Many invertebrates actively modulate cardiovascular using neuronal, neurohormonal, skeletal muscle activity. In vertebrates, cardiac morphology, cardiomyocyte function, contractile protein regulation by Ca2+ highlights high degree conservation, but differences between species exist are coupled variable environments body temperatures. Key regulators vertebrate systemic blood pressure include autonomic nervous system, hormones, ventricular filling. Further factors regulating adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, hydrogen sulfide, name few. Diverse vascular morphologies flow coronary cerebral circulations also apparent nonmammalian Dynamic adjustments associated with exercise land, flying altitude, prolonged dives marine mammals, unique such giraffe. Future studies should address limits gas exchange convective transport, evolution arterial taxa, importance adaptations extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017.

参考文章(532)
J. W. Hicks, H. S. Badeer, Gravity and the circulation: "open" vs. "closed" systems. American Journal of Physiology-regulatory Integrative and Comparative Physiology. ,vol. 262, ,(1992) , 10.1152/AJPREGU.1992.262.5.R725
C. M. Domaingue, Anaesthesia for neurosurgery in the sitting position: a practical approach. Anaesthesia and Intensive Care. ,vol. 33, pp. 323- 331 ,(2005) , 10.1177/0310057X0503300307
J. H. Jones, K. E. Longworth, A. Lindholm, K. E. Conley, R. H. Karas, S. R. Kayar, C. R. Taylor, Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand Journal of Applied Physiology. ,vol. 67, pp. 862- 870 ,(1989) , 10.1152/JAPPL.1989.67.2.862
E. W. Taylor, T. Wang, Control of the Heart and of Cardiorespiratory Interactions in Ectothermic Vertebrates Springer, Berlin, Heidelberg. pp. 285- 315 ,(2009) , 10.1007/978-3-540-93985-6_13
Warren W. Burggren, Carl L. Reiber, Evolution of Cardiovascular Systems and Their Endothelial Linings Endothelial Biomedicine. pp. 29- 49 ,(2007) , 10.1017/CBO9780511546198.004
Warren W. Burggren, Brian R. McMahon, Biology of the Land Crabs: CIRCULATION ,(1988) , 10.1017/CBO9780511753428.010
N. Toda, K. Ayajiki, Phylogenesis of constitutively formed nitric oxide in non-mammals. Reviews of Physiology Biochemistry and Pharmacology. ,vol. 157, pp. 31- 80 ,(2006) , 10.1007/112_0601
Michihiko Tada, Masaaki Kadoma, Makoto Inui, Jun-ichi Fujii, [11] Regulation of Ca2+-pump from cardiac sarcoplasmic reticulum Methods in Enzymology. ,vol. 157, pp. 107- 154 ,(1988) , 10.1016/0076-6879(88)57073-8
Anthony P. Farrell, David R. Jones, 1 - The Heart Fish Physiology. ,vol. 12, pp. 1- 88 ,(1992) , 10.1016/S1546-5098(08)60331-3
D.J. Randall, 4 The Circulatory System Fish Physiology. ,vol. 4, pp. 133- 172 ,(1970) , 10.1016/S1546-5098(08)60129-6