Brief Paper: Dynamical analysis and control of microcantilevers

作者: M. Ashhab , M.V. Salapaka , M. Dahleh , I. Mezić

DOI: 10.1016/S0005-1098(99)00077-1

关键词:

摘要: In this paper, we study the dynamical behavior of a microcantilever-sample system that forms basis for operation atomic force microscopes (AFM). We model microcantilever by single mode approximation and interaction between sample cantilever van der Waals (vdW) potential. The is vibrated sinusoidal input, its deflection detected optically. analyze forced dynamics using Melnikov method, which reveals region in space physical parameters where chaotic motion possible. addition, proportional derivative controller compute function terms controller. Using relation it possible to design controllers will remove possibility chaos.

参考文章(8)
John Guckenheimer, Stephen Wiggins, Chaotic transport in dynamical systems ,(1991)
N. A. Burnham, A. J. Kulik, G. Gremaud, G. A. D. Briggs, Nanosubharmonics: The dynamics of small nonlinear contacts. Physical Review Letters. ,vol. 74, pp. 5092- 5095 ,(1995) , 10.1103/PHYSREVLETT.74.5092
Jacob N. Israelachvili, Intermolecular and surface forces ,(1985)
I. M. Ryzhik, I. S. Gradshteyn, M. Y. Tseytlin, Y. V. Geronimus, Alan Jeffrey, Y. C. Fung, Table of Integrals, Series, and Products ,(1943)
D. I. R. Sander, W. Schrepp, P. Hössel, Scanning force microscopy Cosmetics and toiletries. ,vol. 111, pp. 57- 65 ,(1996)
Stephen Wiggins, Chaotic transport in dynamical systems STIA. ,vol. 92, pp. 28228- ,(1992)
I. M. Ryzhik, I. S. Gradshteyn, Table of integrals, series and products New York: Academic Press. ,(1980)