Choosing the Right Lens: Finding What is Interesting in Data Mining

作者: Liqiang Geng , Howard J. Hamilton

DOI: 10.1007/978-3-540-44918-8_1

关键词:

摘要:

参考文章(47)
Howard J. Hamilton, Guichong Li, Basic Association Rules. siam international conference on data mining. pp. 166- 177 ,(2004)
Cory J. Butz, Howard J. Hamilton, Hong Yao, A Foundational Approach to Mining Itemset Utilities from Databases. siam international conference on data mining. pp. 482- 486 ,(2004)
Yiyu Yao, Yaohua Chen, Xue Dong Yang, A Measurement-Theoretic Foundation of Rule Interestingness Evaluation. Foundations and Novel Approaches in Data Mining. pp. 41- 59 ,(2006)
Robert J. Hilderman, Howard J. Hamilton, Knowledge discovery and measures of interest ,(2001)
Ramakrishnan Srikant, Rakesh Agrawal, Fast algorithms for mining association rules very large data bases. pp. 580- 592 ,(1998)
Ke Wang, Senqiang Zhou, Jiawei Han, Profit Mining: From Patterns to Actions extending database technology. pp. 70- 87 ,(2002) , 10.1007/3-540-45876-X_7
Deborah R Carvalho, Alex A Freitas, None, A Genetic Algorithm-Based Solution for the Problem of Small Disjuncts european conference on principles of data mining and knowledge discovery. pp. 345- 352 ,(2000) , 10.1007/3-540-45372-5_35
Miho Ohsaki, Shinya Kitaguchi, Kazuya Okamoto, Hideto Yokoi, Takahira Yamaguchi, Evaluation of rule interestingness measures with a clinical dataset on hepatitis european conference on principles of data mining and knowledge discovery. pp. 362- 373 ,(2004) , 10.1007/978-3-540-30116-5_34
Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd Stumme, Lotfi Lakhal, Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets Lecture Notes in Computer Science. ,vol. 1861, pp. 972- 986 ,(2000) , 10.1007/3-540-44957-4_65
Guozhu Dong, Jinyan Li, Interestingness of Discovered Association Rules in Terms of Neighborhood-Based Unexpectedness knowledge discovery and data mining. ,vol. 1394, pp. 72- 86 ,(1998) , 10.1007/3-540-64383-4_7