The evolution to localized and front solutions in a non-Lipschitz reaction–diffusion Cauchy problem with trivial initial data

作者: J.C. Meyer , D.J. Needham

DOI: 10.1016/J.JDE.2016.10.027

关键词:

摘要: Abstract In this paper, we establish the existence of spatially inhomogeneous classical self-similar solutions to a non-Lipschitz semi-linear parabolic Cauchy problem with trivial initial data. Specifically consider bounded an associated two-dimensional non-autonomous dynamical system, for which, two-parameter family homoclinic connections on origin, and heteroclinic connection between two equilibrium points. Additionally, obtain bounds estimates rate convergence origin.

参考文章(25)
Peter D. Miller, Applied asymptotic analysis ,(2006)
Peter Pol� c ik, Eiji Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation Mathematische Annalen. ,vol. 327, pp. 745- 771 ,(2003) , 10.1007/S00208-003-0469-Y
P. Poláčik, Symmetry properties of positive solutions of parabolic equations on ℝN: I. Asymptotic symmetry for the Cauchy problem Communications in Partial Differential Equations. ,vol. 30, pp. 1567- 1593 ,(2005) , 10.1080/03605300500299919
Claus Dohmen, Munemitsu Hirose, Structure of positive radial solutions to the Haraux-Weissler equation Nonlinear Analysis-theory Methods & Applications. ,vol. 33, pp. 51- 69 ,(1998) , 10.1016/S0362-546X(97)00542-7
Noriko Mizoguchi, Eiji Yanagida, Critical exponents for the blow-up of solutions with sign changes in a semilinear parabolic equation Mathematische Annalen. ,vol. 307, pp. 663- 675 ,(1997) , 10.1007/S002080050055
J. Aguirre, M. Escobedo, A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. Asymptotic behaviour of solutions Annales de la faculté des sciences de Toulouse Mathématiques. ,vol. 8, pp. 175- 203 ,(1987) , 10.5802/AFST.637
Fred B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation Israel Journal of Mathematics. ,vol. 38, pp. 29- 40 ,(1981) , 10.1007/BF02761845
J. C. Meyer, D. J. Needham, Extended weak maximum principles for parabolic partial differential inequalities on unbounded domains Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 470, pp. 20140079- ,(2014) , 10.1098/RSPA.2014.0079