Tunneling of quantum spins

作者: J.L. Van Hemmen , A. Sütö

DOI: 10.1016/0378-4363(86)90347-5

关键词:

摘要: Abstract A WKB formalism is presented whereby the tunneling rate of a quantum spin obtained in semiclassical limit when h → 0 and number S ∞ such way that remains constant. The main idea to single out one t anisotropy axes, say z-axis, work representation with Sz, z-component spin, diagonal describe as hopping process on spectrum Sz. This enables us efficiently handle problems, incorporate dissipation, prove universal, i.e. independent particular form anisotropy.

参考文章(26)
J. L. van Hemmen, A. Sütő, Low-Temperature Relaxation in Spin Glasses European Physical Journal B. ,vol. 61, pp. 263- 266 ,(1985) , 10.1007/BF01317793
A. O. Caldeira, A. J. Leggett, Influence of Dissipation on Quantum Tunneling in Macroscopic Systems Physical Review Letters. ,vol. 46, pp. 211- 214 ,(1981) , 10.1103/PHYSREVLETT.46.211
E. T. Whittaker, G. N. Watson, A Course of Modern Analysis ,(1902)
A. J. Bray, M. A. Moore, Influence of Dissipation on Quantum Coherence Physical Review Letters. ,vol. 49, pp. 1545- 1549 ,(1982) , 10.1103/PHYSREVLETT.49.1545
L. S. Schulman, Cecile Dewitt‐Morette, Techniques and Applications of Path Integration ,(2005)
H. A. Kramers, Wellenmechanik und halbzahlige Quantisierung European Physical Journal. ,vol. 39, pp. 828- 840 ,(1926) , 10.1007/BF01451751
R.P Feynman, F.L Vernon, The Theory of a general quantum system interacting with a linear dissipative system Annals of Physics. ,vol. 24, pp. 547- 607 ,(1963) , 10.1016/0003-4916(63)90068-X
W. Ledermann, A. Mostowski, M. Stark, J. Musielak, Introduction to Higher Algebra The Mathematical Gazette. ,vol. 49, pp. 335- ,(1965) , 10.2307/3612905
D. Rees, Richard Bellman, Introduction to Matrix Analysis The Mathematical Gazette. ,vol. 56, pp. 78- ,(1972) , 10.2307/3613753
Eugen MERZBACHER (of the University of North Carolina.), Quantum Mechanics ,(1961)