Gene-Silencing-Induced Changes in Carbohydrate Conformation in Relation to Bioenergy Value and Carbohydrate Subfractions in Modeled Plant (Medicago sativa) with Down-Regulation of HB12 and TT8 Transcription Factors

作者: Xinxin Li , Abdelali Hannoufa , Yonggen Zhang , Peiqiang Yu

DOI: 10.3390/IJMS17050720

关键词:

摘要: Gene silencing with RNA interference (RNAi) technology may be capable of modifying internal structure at a molecular level. This structural modification could affect biofunctions in terms biodegradation, biochemical metabolism, and bioactive compound availability. The objectives this study were to (1) Detect gene silencing-induced changes carbohydrate an alfalfa forage (Medicago sativa spp. sativa: alfalfa) down-regulation genes that encode transcription factors TT8 HB12; (2) Determine nutrient bioutilization bioavailability the sativa); (3) Quantify correlation between animals ruminants. experimental treatments included: T1 = Non-transgenic no-gene silenced (code “NT”); T2 HB12-RNAi HB12 down regulation “HB12”); T3 TT8-RNAi “TT8”). determined by non-invasive non-destructive advanced spectroscopy middle infrared radiation region focused on structural, non-structural total compounds. modified using NRC-2001 system digestive (TDN), truly digestible fiber (tdNDF), non-fiber fatty acid (tdFA), crude protein (tdCP) bioenergy profiles (digestible energy, metabolizable net energy) for subfractions evaluated updated CNCPS 6.0 system. results showed significantly affected tdNFC (42.3 (NT) vs. 38.7 (HB12) 37.4% Dry Matter (TT8); p 0.016) tdCP (20.8 19.4 22.3% DM 0.009). gene-silencing also CA4 (7.4 4.2 4.4% (CHO) (TT8), 0.063) CB1 fractions (5.3 2.0 2.6% CHO 0.006). functional group peak area intensity ca. 1315 cm−1 was correlated TDN1x (r −0.83, 0.042) 0.042), height 1370 tdNDF −0.87, 0.025). A_Non-stCHO A_StCHO ratio A_CHO tdFA 0.83–0.91, < 0.05). As fractions, both spectral H_1415 H_1315 (p 0.039; 0.059, respectively), CB3 tended correlate H_1150, H_1100 H_1025 0.10). In conclusion, RNAi-mediated not only inherent but biofunctions. induced RNAi associated digestion.

参考文章(23)
Darryl J. Gibb, Nutrient Requirements of Beef Cattle, 7th ed Canadian Veterinary Journal-revue Veterinaire Canadienne. ,vol. 38, pp. 662- 662 ,(1997)
A. Jonker, M. Y. Gruber, Y. Wang, B. Coulman, J. J. McKinnon, D. A. Christensen, P. Yu, Foam stability of leaves from anthocyanidin‐accumulating Lc‐alfalfa and relation to molecular structures detected by fourier‐transformed infrared‐vibration spectroscopy Grass and Forage Science. ,vol. 67, pp. 369- 381 ,(2012) , 10.1111/J.1365-2494.2012.00853.X
W.P. Weiss, H.R. Conrad, N.R. St. Pierre, A theoretically-based model for predicting total digestible nutrient values of forages and concentrates Animal Feed Science and Technology. ,vol. 39, pp. 95- 110 ,(1992) , 10.1016/0377-8401(92)90034-4
Lisa M. Miller, Paul Dumas, Chemical imaging of biological tissue with synchrotron infrared light Biochimica et Biophysica Acta. ,vol. 1758, pp. 846- 857 ,(2006) , 10.1016/J.BBAMEM.2006.04.010
Akula Nookaraju, Shashank K. Pandey, Hyeun-Jong Bae, Chandrashekhar P. Joshi, Designing Cell Walls for Improved Bioenergy Production Molecular Plant. ,vol. 6, pp. 8- 10 ,(2013) , 10.1093/MP/SSS111
T.P. Tylutki, D.G. Fox, V.M. Durbal, L.O. Tedeschi, J.B. Russell, M.E. Van Amburgh, T.R. Overton, L.E. Chase, A.N. Pell, Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle Animal Feed Science and Technology. ,vol. 143, pp. 174- 202 ,(2008) , 10.1016/J.ANIFEEDSCI.2007.05.010
C. Lanzas, C.J. Sniffen, S. Seo, L.O. Tedeschi, D.G. Fox, A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants Animal Feed Science and Technology. ,vol. 136, pp. 167- 190 ,(2007) , 10.1016/J.ANIFEEDSCI.2006.08.025