Denoising using local projective subspace methods

作者: Peter Gruber , Kurt Stadlthanner , Matthias Böhm , Fabian J Theis , Elmar Wolfgang Lang

DOI: 10.1016/J.NEUCOM.2005.12.025

关键词:

摘要: In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies applying locally to clusters of embedded in a high-dimensional feature space delayed coordinates. components resembling the can be detected by various criteria like estimators kurtosis or variance autocorrelations depending statistical nature signal. proposed applied favorably problem multi-dimensional data. Another projective subspace method using coordinates has been recently with dAMUSE. It combines solution blind source separation problems efforts an elegant way proofs very efficient fast. Finally, KPCA represents non-linear that is well suited also. Besides illustrative applications toy examples images, provide application all considered analysis protein NMR spectra.

参考文章(41)
Shun-ichi Amari, Andrzej Cichocki, Adaptive blind signal and image processing ,(2002)
Shun-ichi Amari, Andrzej Cichocki, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications John Wiley & Sons, Inc.. ,(2002)
Fabian J. Theis, Anke Meyer-Bäse, Elmar W. Lang, Second-Order Blind Source Separation Based on Multi-dimensional Autocovariances international conference on independent component analysis and signal separation. pp. 726- 733 ,(2004) , 10.1007/978-3-540-30110-3_92
Erkki Oja, Aapo Hyvarinen, Juha Karhunen, Independent Component Analysis ,(2001)
Simon S Haykin, Bart Kosko, Intelligent Signal Processing : IEEE Press. pp. 1- 12 ,(2001) , 10.1007/978-94-011-1056-3_1
Richard C. Dubes, Anil K. Jain, Algorithms for clustering data ,(1988)
K. Lehnertz, C. E. Elger, T. Schreiber, P. David, A. Effern, T. Grunwald, Nonlinear denoising of transient signals with application to event-related potentials Physica D: Nonlinear Phenomena. ,vol. 140, pp. 257- 266 ,(2000) , 10.1016/S1386-9477(00)00111-9