Intrinsic Bayesian model for high-dimensional unsupervised reduction

作者: Longcun Jin , Wanggen Wan , Yongliang Wu , Bin Cui , Xiaoqing Yu

DOI: 10.1016/J.NEUCOM.2011.03.060

关键词:

摘要: This paper proposes a novel algorithm for high-dimensional unsupervised reduction from intrinsic Bayesian model. The proposed is to assume that the pixel reflectance results nonlinear combinations of pure component spectra contaminated by additive noise. constraints are naturally expressed in literature using appropriate abundance prior distributions. posterior distributions unknown model parameters then derived. consists inductive cognition part and hierarchical part. has several advantages over traditional distance based on algorithms. cognitive used decide which dimensions advantageous output recommended hyperspectral image. can be interpreted as fast inference method We describe procedures learning hyperparameters, computing distribution, extensions Experimental data demonstrate robust useful properties algorithm.

参考文章(64)
AM Mudabeti, Remote sensing 1 ,(2013)
M. D. LEE, Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review. ,vol. 15, pp. 1- 15 ,(2008) , 10.3758/PBR.15.1.1
Peter Gruber, Kurt Stadlthanner, Matthias Böhm, Fabian J Theis, Elmar Wolfgang Lang, Ana Maria Tomé, Ana R Teixeira, Carlos García Puntonet, JM Gorriz Saéz, None, Denoising using local projective subspace methods Neurocomputing. ,vol. 69, pp. 1485- 1501 ,(2006) , 10.1016/J.NEUCOM.2005.12.025
Stefan Harmeling, Guido Dornhege, David Tax, Frank Meinecke, Klaus-Robert Müller, From outliers to prototypes: Ordering data Neurocomputing. ,vol. 69, pp. 1608- 1618 ,(2006) , 10.1016/J.NEUCOM.2005.05.015
Anish Mohan, Guillermo Sapiro, Edward Bosch, Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images IEEE Geoscience and Remote Sensing Letters. ,vol. 4, pp. 206- 210 ,(2007) , 10.1109/LGRS.2006.888105
R. Dennis Cook, Fisher Lecture: Dimension Reduction in Regression Statistical Science. ,vol. 22, pp. 1- 26 ,(2007) , 10.1214/088342306000000682
Joshua B Tenenbaum, Vin de Silva, John C Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction Science. ,vol. 290, pp. 2319- 2323 ,(2000) , 10.1126/SCIENCE.290.5500.2319
R.S. Lynch, P.K. Willett, Bayesian classification and feature reduction using uniform Dirichlet priors systems man and cybernetics. ,vol. 33, pp. 448- 464 ,(2003) , 10.1109/TSMCB.2003.811121
M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, N. I. Zheludev, Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution. Optics Express. ,vol. 15, pp. 11313- 11320 ,(2007) , 10.1364/OE.15.011313