Mathematical Modelling of Spatiotemporal Dynamics of Oxygen in a Plankton System

作者: Y. Sekerci , S. Petrovskii

DOI: 10.1051/MMNP/201510207

关键词:

摘要: Oxygen production due to phytoplankton photosynthesis is a crucial phenomenon underlying the dynamics of marine ecosystems. However, most existing literature focus on other aspects plankton community functioning, thus leaving issue coupled oxygen-plankton understudied. In this paper, we consider generic model oxygen-phytoplankton-zooplankton make an insight into basic properties plankton-oxygen interactions. The analyzed both analytically and numerically. We first nonspatial show that it predicts possible oxygen depletion under certain environmental conditions. then spatially explicit exhibits rich variety spatiotemporal patterns including travelling fronts depletion, dynamical stabilization unstable equilibrium chaos.

参考文章(38)
Mark R. Abbott, Phytoplankton Patchiness: Ecological Implications and Observation Methods Lecture Notes in Biomathematics. ,vol. 96, pp. 37- 49 ,(1993) , 10.1007/978-3-642-50155-5_4
S Petrovskii, H Malchow, F M Hilker, Models of spatiotemporal pattern formation in plankton dynamics Nova Acta Leopoldina NF. ,vol. 88, pp. 325- 340 ,(2003)
Sergei V. Petrovskii, Horst Malchow, Ezio Venturino, Spatiotemporal patterns in ecology and epidemiology : theory, models, and simulation ,(2007)
Sergio Rinaldi, H. Stehfest, H. Tamura, Rodolfo Soncini Sessa, Modelling and Control of River Quality McGraw-Hill. ,(1979)
Leah Edelstein-Keshet, Mathematical Models in Biology Society for Industrial and Applied Mathematics. ,(2005) , 10.1137/1.9780898719147
Yuri A. Kuznetsov, Elements of applied bifurcation theory ,(1995)
Michael Bengfort, Ulrike Feudel, Frank M. Hilker, Horst Malchow, Plankton blooms and patchiness generated by heterogeneous physical environments Ecological Complexity. ,vol. 20, pp. 185- 194 ,(2014) , 10.1016/J.ECOCOM.2014.10.003
Andrew M Edwards, John Brindley, Zooplankton mortality and the dynamical behaviour of plankton population models. Bulletin of Mathematical Biology. ,vol. 61, pp. 303- 339 ,(1999) , 10.1006/BULM.1998.0082