Freedom in minimal normal forms

作者: Etienne Forest , Diana Murray

DOI: 10.1016/0167-2789(94)90195-3

关键词:

摘要: Abstract The purpose of this paper is to clarify the amount freedom that available in a complete normalization symplectic map. In particular, we prove minimal normal form (MNF) Kahn and Zarmi disguise. We show there no reason believe has an extended region good behavior despite fact it better immediate neighborhood origin. Our results apply also multi-dimensional problems. However, cannot be trivially higher dimensionality without loosing analiticity, thus our discussion will clear up some issues raised recently by Mane Weng.

参考文章(9)
Carl-Ludwig Siegel, Jürgen K. Moser, C. I. Kalme, Lectures on Celestial Mechanics ,(1971)
A. Bazzani, P. Mazzanti, G. Servizi, G. Turchetti, Normal forms for Hamiltonian maps and nonlinear effects in a particle accelerator Il Nuovo Cimento B. ,vol. 102, pp. 51- 80 ,(1988) , 10.1007/BF02728793
M. Berz, E. Forest, J. Irwin, Normal form methods for complicated periodic systems Particle Accelerators. ,vol. 24, pp. 91- 107 ,(1989)
Thomas J. Bridges, Richard H. Cushman, Unipotent normal forms for symplectic maps Physica D: Nonlinear Phenomena. ,vol. 65, pp. 211- 241 ,(1993) , 10.1016/0167-2789(93)90160-3
Alex J. Dragt, John M. Finn, Lie Series and Invariant Functions for Analytic Symplectic Maps Journal of Mathematical Physics. ,vol. 17, pp. 2215- 2227 ,(1976) , 10.1063/1.522868
Peter B. Kahn, Yair Zarmi, Minimal normal forms in harmonic oscillations with small nonlinear perturbations Physica D: Nonlinear Phenomena. ,vol. 54, pp. 65- 74 ,(1991) , 10.1016/0167-2789(91)90108-L
Alberto Baider, Richard Churchill, Unique normal forms for planar vector fields Mathematische Zeitschrift. ,vol. 199, pp. 303- 310 ,(1988) , 10.1007/BF01159780
E.D Courant, H.S Snyder, Theory of the Alternating-Gradient Synchrotron Annals of Physics. ,vol. 281, pp. 360- 408 ,(1958) , 10.1016/0003-4916(58)90012-5
Étienne Forest, A Hamiltonian - free description of single particle dynamics for hopelessly complex periodic systems Journal of Mathematical Physics. ,vol. 31, pp. 1133- 1144 ,(1990) , 10.1063/1.528795