Modélisation mathématique multi-échelle de l'angiogenèse tumorale : analyse de la réponse tumorale aux traitements anti-angiogéniques

作者: Frédérique Billy

DOI:

关键词:

摘要: Le cancer est l'une des principales causes de deces dans le monde. L'angiogenese tumorale processus formation nouveaux vaisseaux sanguins a partir preexistants. Une tumeur cancereuse peut induire l'angiogenese afin disposer d'apports supplementaires en oxygene et nutriments, indispensables la poursuite son developpement. Cette these consiste l'elaboration d'un modele mathematique multi-echelle tumorale. Ce integre les principaux mecanismes intervenant aux echelles tissulaire moleculaire. Couple un croissance tumorale, notre permet d'etudier effets l'apport sur D'un point vue mathematique, ces modeles d'angiogenese reposent equations derivees partielles reaction-diffusion d'advection regissant l'evolution spatio-temporelle densites cellules endotheliales, constituant paroi sanguins, tumorales, ainsi que celle concentrations tissulaires substances pro- antiangiogeniques oxygene. A l'echelle moleculaire, liaison angiogeniques recepteurs membranaires mecanisme cle communication intercellulaire, modelisee l'aide lois pharmacologiques. reproduire in silico d'analyser leur role Il egalement simuler l'action differentes therapies anti-angiogeniques, efficacite developpement tumoral d'aider l'innovation therapeutique

参考文章(100)
Daniel J. Dumont, Janet Rossant, Ron A Conlon, Terry P. Yamaguchi, Martin L. Breitman, tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors Oncogene. ,vol. 7, pp. 1471- 1480 ,(1992)
W Gropp, P Brune, A Dener, S Abhyankar, K Rupp, B Smith, S Balay, D May, T Munson, D Kaushik, H Zhang, K Buschelman, M Knepley, R Mills, L Curfman McInnes, L Dalcin, J Brown, P Sanan, D Karpeyev, M Adams, S Zampini, Eijkhout, PETSc Users Manual Argonne National Laboratory. ,(2019)
Deakin As, Model for the growth of a solid in vitro tumor. Growth. ,vol. 39, pp. 159- ,(1975)
Gyllenberg M, Webb Gf, Quiescence as an explanation of Gompertzian tumor growth. Growth Development and Aging. ,vol. 53, pp. 25- 33 ,(1989)
Syed A. Ahmad, Wenbiao Liu, Young D. Jung, Fan Fan, Niels Reinmuth, Corazon D. Bucana, Lee M. Ellis, Differential expression of angiopoietin-1 and angiopoietin-2 in colon carcinoma. A possible mechanism for the initiation of angiogenesis. Cancer. ,vol. 92, pp. 1138- 1143 ,(2001) , 10.1002/1097-0142(20010901)92:5<1138::AID-CNCR1431>3.0.CO;2-L
Susan LeJeune, Russell Leek, Stephen Fox, Ruth Whitehouse, Amir Moghaddam, Prudence A. E. Scott, Roy Bicknell, Micheie Relf, Kenneth Smith, Adrian L. Harris, Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Research. ,vol. 57, pp. 963- 969 ,(1997)
John M.L. Ebos, Christina R. Lee, William Cruz-Munoz, Georg A. Bjarnason, James G. Christensen, Robert S. Kerbel, Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis Cancer Cell. ,vol. 15, pp. 232- 239 ,(2009) , 10.1016/J.CCR.2009.01.021
D. Ambrosi, F. Mollica, On the mechanics of a growing tumor International Journal of Engineering Science. ,vol. 40, pp. 1297- 1316 ,(2002) , 10.1016/S0020-7225(02)00014-9
Samuel Davis, Thomas H Aldrich, Pamela F Jones, Ann Acheson, Debra L Compton, Vivek Jain, Terence E Ryan, Joanne Bruno, Czeslaw Radziejewski, Peter C Maisonpierre, George D Yancopoulos, Isolation of Angiopoietin-1, a Ligand for the TIE2 Receptor, by Secretion-Trap Expression Cloning Cell. ,vol. 87, pp. 1161- 1169 ,(1996) , 10.1016/S0092-8674(00)81812-7
J. Landry, J. P. Freyer, R. M. Sutherland, A model for the growth of multicellular spheroids Cell Proliferation. ,vol. 15, pp. 585- 594 ,(1982) , 10.1111/J.1365-2184.1982.TB01065.X