Genetic associations in large versus small studies: an empirical assessment.

作者: John PA Ioannidis , Thomas A Trikalinos , Evangelia E Ntzani , Despina G Contopoulos-Ioannidis

DOI: 10.1016/S0140-6736(03)12516-0

关键词:

摘要: Summary Background Advances in human genetics could help us to assess prognosis on an individual basis and optimise the management of complex diseases. However, different studies same genetic association sometimes have discrepant results. Our aim was how often large arrive at conclusions than smaller studies, whether this situation arises more frequently when findings first published disagree with those subsequent research. Methods We examined results 55 meta-analyses (579 study comparisons) associations tested magnitude effect differs versus studies. Findings noted significant between-study heterogeneity 26 (47%) meta-analyses. The differed significantly ten (18%), 20 (36%), 21 (38%) tests rank correlation, regression SE, inverse variance, respectively. largest generally yielded conservative complete meta-analyses, which included all (p=0·005). In 14 (26%) metaanalyses proposed stronger Only nine (16%) replicated without hints or bias. There little concordance discrepancies, small discrepancies. Interpretation Genuine bias affect Genetic risk factors for diseases should be assessed cautiously and, if possible, using scale evidence.

参考文章(34)
Jonathan A.C Sterne, Matthias Egger, Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. Journal of Clinical Epidemiology. ,vol. 54, pp. 1046- 1055 ,(2001) , 10.1016/S0895-4356(01)00377-8
Jonathan A.C Sterne, David Gavaghan, Matthias Egger, Publication and related bias in meta-analysis : power of statistical tests and prevalence in the literature Journal of Clinical Epidemiology. ,vol. 53, pp. 1119- 1129 ,(2000) , 10.1016/S0895-4356(00)00242-0
Jennifer L. Kelsey, Methods in Observational Epidemiology ,(1986)
Lon R Cardon, John I Bell, None, Association study designs for complex diseases Nature Reviews Genetics. ,vol. 2, pp. 91- 99 ,(2001) , 10.1038/35052543
Neil J. Risch, Searching for genetic determinants in the new millennium Nature. ,vol. 405, pp. 847- 856 ,(2000) , 10.1038/35015718
John P.A. Ioannidis, Evangelia E. Ntzani, Thomas A. Trikalinos, Despina G. Contopoulos-Ioannidis, Replication validity of genetic association studies. Nature Genetics. ,vol. 29, pp. 306- 309 ,(2001) , 10.1038/NG749
Y. Chagnon, P. A. Donohoue, R. L. Leibel, A. R. Shuldiner, R. C. Elston, U. Pesonen, M. K. Karvonen, B. B. Boyer, K. Silver, D. J. Hoffman, C. Bouchard, R. E. Andersen, M. Laakso, T. I. A. Sørensen, D. B. Allison, M. Koulu, W. K. Chung, M. Heo, M. A. Permutt, S. Echwald, P. Behn, T. L. Burns, A. Rissanen, M. I. J. Uusitupa, O. Pedersen, K. B. Jacobs, Pooling analysis of genetic data: the association of leptin receptor (LEPR) polymorphisms with variables related to human adiposity. Genetics. ,vol. 159, pp. 1163- 1178 ,(2001) , 10.1093/GENETICS/159.3.1163
SANDER GREENLAND, QUANTITATIVE METHODS IN THE REVIEW OF EPIDEMIOLOGIC LITERATURE Epidemiologic Reviews. ,vol. 9, pp. 1- 30 ,(1987) , 10.1093/OXFORDJOURNALS.EPIREV.A036298
Colin B. Begg, Madhuchhanda Mazumdar, Operating characteristics of a rank correlation test for publication bias. Biometrics. ,vol. 50, pp. 1088- 1101 ,(1994) , 10.2307/2533446
Joseph C Cappelleri, PA John, Christopher H Schmid, Sarah D de Ferranti, Michael Aubert, Thomas C Chalmers, Joseph Lau, Large trials vs meta-analysis of smaller trials : How do their results compare ? JAMA. ,vol. 276, pp. 1332- 1338 ,(1996) , 10.1001/JAMA.1996.03540160054033