GLOBAL WELL-POSEDNESS OF QUASILINEAR WAVE EQUATIONS ON ASYMPTOTICALLY DE SITTER SPACES

作者: Peter Hintz

DOI: 10.5802/AIF.3039

关键词:

摘要: We establish the small data solvability of suitable quasilinear wave and Klein-Gordon equations in high regularity spaces on a geometric class spacetimes including asymptotically de Sitter spaces. obtain our results by proving global invertibility linear operators with coecients L 2 -based function using iterative arguments for non- problems. The analysis is accomplished two parts: Firstly, theory developed means calculus pseudodierential non-smooth coecients, similar to one Beals Reed, manifolds boundary. Secondly, asymptotic behavior solutions studied standard b-analysis, introduced this context Vasy; particular, resonances play an important role.

参考文章(43)
Richard B. Melrose, The Atiyah-Patodi-Singer Index Theorem ,(1993)
Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires Annales Scientifiques De L Ecole Normale Superieure. ,vol. 14, pp. 209- 246 ,(1981) , 10.24033/ASENS.1404
J. Sjöstrand, Mouez Dimassi, Spectral asymptotics in the semi-classical limit ,(1999)
Gunther Uhlmann, Maarten de Hoop, András Vasy, Diffraction from conormal singularities arXiv: Analysis of PDEs. ,(2012)
Lars Hörmander, The analysis of linear partial differential operators Springer-Verlag. ,(1990)
Igor Rodnianski, Jared Speck, The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant arXiv: Mathematical Physics. ,(2009)