On the Existence of Classical Solution to the Steady Flows of Generalized Newtonian Fluid with Concentration Dependent Power-Law Index

作者: Petr Kaplický , Miroslav Bulíček , Anna Abbatiello

DOI: 10.1007/S00021-019-0415-8

关键词:

摘要: Steady flows of an incompressible homogeneous chemically reacting fluid are described by a coupled system, consisting the generalized Navier–Stokes equations and convection–diffusion equation with diffusivity dependent on concentration shear rate. Cauchy stress behaves like power-law exponent depending concentration. We prove existence classical solution for two dimensional periodic case whenever power law is above one less than infinity.

参考文章(23)
M. Bulíček, J. Málek, K.R. Rajagopal, Mathematical results concerning unsteady flows of chemically reacting incompressible fluids Partial Differential Equations and Fluid Mechanics. pp. 26- 53 ,(2009) , 10.1017/CBO9781139107112.003
M. Giaquinta, G. Modica, E.M. Wright, Regularity results for some classes of higher order non linear elliptic systems. Crelle's Journal. pp. 145- 169 ,(1979)
Petr Kaplický, Josef Málek, Jana Stará, Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem Commentationes Mathematicae Universitatis Carolinae. ,vol. 38, pp. 681- 695 ,(1997)
Petteri Harjulehto, Lars Diening, Michael Ruzicka, Peter Hästö, Lebesgue and Sobolev Spaces with Variable Exponents ,(2011)
J. Nečas, J. Málek, M. Růžička, M. Rokyta, Weak and Measure-Valued Solutions to Evolutionary PDEs ,(1996)
J. Hron, J. Málek, P. Pustějovská, K. R. Rajagopal, On the Modeling of the Synovial Fluid Advances in Tribology. ,vol. 2010, pp. 1- 12 ,(2010) , 10.1155/2010/104957
Miroslav Bulíček, Petra Pustějovská, On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index Journal of Mathematical Analysis and Applications. ,vol. 402, pp. 157- 166 ,(2013) , 10.1016/J.JMAA.2012.12.066
F. Crispo, P. Maremonti, A high regularity result of solutions to modified p-Stokes equations Nonlinear Analysis-theory Methods & Applications. ,vol. 118, pp. 97- 129 ,(2015) , 10.1016/J.NA.2014.10.017
Miroslav Bulíček, Petra Pustějovská, Existence Analysis for a Model Describing Flow of an Incompressible Chemically Reacting Non-Newtonian Fluid Siam Journal on Mathematical Analysis. ,vol. 46, pp. 3223- 3240 ,(2014) , 10.1137/130927589
Francesca Crispo, Carlo R. Grisanti, On the C1,γ(Ω¯)∩W2,2(Ω) regularity for a class of electro-rheological fluids Journal of Mathematical Analysis and Applications. ,vol. 356, pp. 119- 132 ,(2009) , 10.1016/J.JMAA.2009.02.013