Path integral formulation of general diffusion processes

作者: Robert Graham

DOI: 10.1007/BF01312935

关键词:

摘要: A method is given for the derivation of a path integral representation Green's function solutionP equations∂P/∂t=LP,L being some Liouville operator. The applied to general diffusion processes.

参考文章(11)
R.G. Medhurst, Topics in the Theory of Random Noise Electronics and Power. ,vol. 15, pp. 30- ,(1969) , 10.1049/EP.1969.0039
P. C. Martin, E. D. Siggia, H. A. Rose, Statistical Dynamics of Classical Systems Physical Review A. ,vol. 8, pp. 423- 437 ,(1973) , 10.1103/PHYSREVA.8.423
H. Dekker, On the functional integral for generalized Wiener processes and nonequilibrium phenomena Physica A-statistical Mechanics and Its Applications. ,vol. 85, pp. 598- 606 ,(1976) , 10.1016/0378-4371(76)90028-5
G. E. Uhlenbeck, L. S. Ornstein, On the Theory of the Brownian Motion Physical Review. ,vol. 36, pp. 823- 841 ,(1930) , 10.1103/PHYSREV.36.823
L. Onsager, S. Machlup, Fluctuations and Irreversible Processes Physical Review. ,vol. 91, pp. 1505- 1512 ,(1953) , 10.1103/PHYSREV.91.1505
W. Horsthemke, A. Bach, Onsager-Machlup Function for one dimensional nonlinear diffusion processes European Physical Journal B. ,vol. 22, pp. 189- 192 ,(1975) , 10.1007/BF01322364
Norbert Wiener, Generalized harmonic analysis Acta Mathematica. ,vol. 55, pp. 117- 258 ,(1930) , 10.1007/BF02546511
N. Hashitsume, A Statistical Theory of Linear Dissipative Systems Progress of Theoretical Physics. ,vol. 8, pp. 461- 478 ,(1952) , 10.1143/PTP/8.4.461