Perturbations of slowly rotating black holes: massive vector fields in the Kerr metric

作者: Paolo Pani , Vitor Cardoso , Leonardo Gualtieri , Emanuele Berti , Akihiro Ishibashi

DOI: 10.1103/PHYSREVD.86.104017

关键词:

摘要: We discuss a general method to study linear perturbations of slowly rotating black holes which is valid for any perturbation field, and particularly advantageous when the field equations are not separable. As an illustration we investigate massive vector (Proca) in Kerr metric, do appear be separable standard Teukolsky formalism. Working perturbative scheme, two important effects induced by rotation: Zeeman-like shift nonaxisymmetric quasinormal modes bound states with different azimuthal number $m$, coupling between axial polar multipolar index $\ensuremath{\ell}$. explicitly compute up second order rotation, but principle can extended order. at first rotation show that Proca computed solving decoupled sets equations, derive single master equation describing spin $s=0$ $s=\ifmmode\pm\else\textpm\fi{}1$. By extending calculation superradiant regime self-consistent way. For time fields around exhibit instability, significantly stronger than scalar fields. Because this astrophysical observations spinning provide tightest upper limit on mass photon: ${m}_{\ensuremath{\gamma}}\ensuremath{\lesssim}4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}20}\text{ }\text{ }\mathrm{eV}$ under our most conservative assumptions. Spin measurements largest could reduce ${m}_{\ensuremath{\gamma}}\ensuremath{\lesssim}{10}^{\ensuremath{-}22}\text{ or lower.

参考文章(93)
A. Pelster, C. Simmendinger, A. Wunderlin, Analytical approach for the Floquet theory of delay differential equations. Physical Review E. ,vol. 59, pp. 5344- 5353 ,(1999) , 10.1103/PHYSREVE.59.5344
L. R. Wiencke, L. Wolfenstein, J. Womersley, C. L. Woody, R. L. Workman, A. Yamamoto, G. P. Zeller, O. V. Zenin, J. Zhang, R. -Y. Zhu, G. Harper, V. S. Lugovsky, P. Schaffner, B. Foster, T. K. Gaisser, L. Garren, H. -J. Gerber, G. Gerbier, T. Gherghetta, S. Golwala, M. Goodman, C. Grab, A. V. Gritsan, J. -F. Grivaz, M. Grünewald, A. Gurtu, T. Gutsche, H. E. Haber, K. Hagiwara, C. Hagmann, C. Hanhart, S. Hashimoto, K. G. Hayes, M. Heffner, B. Heltsley, J. J. Hernández-Rey, K. Hikasa, A. Höcker, J. Holder, A. Holtkamp, J. Huston, J. D. Jackson, K. F. Johnson, T. Junk, D. Karlen, D. Kirkby, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Yu. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, P. Langacker, A. Liddle, Z. Ligeti, T. M. Liss, L. Littenberg, K. S. Lugovsky, S. B. Lugovsky, T. Mannel, A. V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, J. Matthews, D. Milstead, R. Miquel, K. Mönig, F. Moortgat, K. Nakamura, M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, L. Pape, J. Parsons, C. Patrignani, J. A. Peacock, S. T. Petcov, A. Piepke, A. Pomarol, G. Punzi, A. Quadt, S. Raby, G. Raffelt, B. N. Ratcliff, P. Richardson, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, C. T. Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, D. Scott, W. G. Seligman, M. H. Shaevitz, S. R. Sharpe, M. Silari, T. Sjöstrand, P. Skands, J. G. Smith, G. F. Smoot, S. Spanier, H. Spieler, A. Stahl, T. Stanev, S. L. Stone, T. Sumiyoshi, M. J. Syphers, F. Takahashi, M. Tanabashi, J. Terning, M. Titov, N. P. Tkachenko, N. A. Törnqvist, D. Tovey, G. Valencia, K. van Bibber, G. Venanzoni, M. G. Vincter, P. Vogel, A. Vogt, W. Walkowiak, C. W. Walter, D. R. Ward, T. Watari, G. Weiglein, E. J. Weinberg, J. Beringer, J. -F. Arguin, R. M. Barnett, K. Copic, O. Dahl, D. E. Groom, C. -J. Lin, J. Lys, H. Murayama, C. G. Wohl, W. -M. Yao, P. A. Zyla, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, H. R. Band, T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, E. Bergren, G. Bernardi, W. Bertl, S. Bethke, H. Bichsel, O. Biebel, E. Blucher, S. Blusk, G. Brooijmans, O. Buchmueller, R. N. Cahn, M. Carena, A. Ceccucci, D. Chakraborty, M. -C. Chen, R. S. Chivukula, G. Cowan, G. D'Ambrosio, T. Damour, D. de Florian, A. de Gouvêa, T. DeGrand, P. de Jong, G. Dissertori, B. Dobrescu, M. Doser, M. Drees, D. A. Edwards, S. Eidelman, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, Review of Particle Physics: Particle data group Physical Review D. ,vol. 86, pp. 100011- 10001958 ,(2012) , 10.1103/PHYSREVD.86.010001
Gabriela Mocanu, Daniel Grumiller, None, Self-organized criticality in boson clouds around black holes Physical Review D. ,vol. 85, pp. 105022- ,(2012) , 10.1103/PHYSREVD.85.105022
Emanuele Berti, Vitor Cardoso, José A. Gonzalez, Ulrich Sperhake, Mark Hannam, Sascha Husa, Bernd Brügmann, Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis Physical Review D. ,vol. 76, pp. 064034- ,(2007) , 10.1103/PHYSREVD.76.064034
An analytic representation for the quasi-normal modes of Kerr black holes Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 402, pp. 285- 298 ,(1985) , 10.1098/RSPA.1985.0119
Valeria Ferrari, Leonardo Gualtieri, Quasi-normal modes and gravitational wave astronomy General Relativity and Gravitation. ,vol. 40, pp. 945- 970 ,(2008) , 10.1007/S10714-007-0585-1
R. A. Konoplya, Alexander Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory Reviews of Modern Physics. ,vol. 83, pp. 793- 836 ,(2011) , 10.1103/REVMODPHYS.83.793
Yasusada Nambu, Hironobu Furuhashi, Instability of Massive Scalar Fields in Kerr-Newman Spacetime Progress of Theoretical Physics. ,vol. 112, pp. 983- 995 ,(2004) , 10.1143/PTP.112.983
Theodoros J.M Zouros, Douglas M Eardley, INSTABILITIES OF MASSIVE SCALAR PERTURBATIONS OF A ROTATING BLACK HOLE Annals of Physics. ,vol. 118, pp. 139- 155 ,(1979) , 10.1016/0003-4916(79)90237-9